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1.0 INTRODUCTION

The Intrasystem Electromagnetic Compatibility Analysis Program

(IEMCAP) is a systems level, computerized analysis program which may be used

in analyzing electromagnetic compatibility (EMC) for aircraft, spacecraft or

ground stations on both present and future systems. The IEMCAP improvement

contract is sponsored by the Compatibility Branch (RADC/RBCT), Rome Air

Development Center, Griffiss Air Force Base, New York, under contract number

F30602-79-C-0169. The objective of this effort was to increase the prediction

capability of the IEMCAP. The defined tasks to obtain the new capability are

the following:

(1) development of a frequency dependent power gain

antenna model for IEMCAP;

(2) modify IEMCAP to predict the electromagnetic (EM)

interference for those devices whose compatibility

is not related to average power,

(3) implement within IEMCAP a mathematical model(s) to

predict the degradation to receptors of EM energy,

caused by spurious signal products generated at an

emitter, a structural nonlinearity (i.e., in the

transmission path), or in a victim receptor (i.e.,

signal harmonics, intermodulation, cross modulation,

desensitization, gain compression/expansion and

spurious responses); and

(4) modification of the modeling procedure for a port's

emission and/or susceptibility.

Upon completion of the above modeling effort, the developed models were to be

coded and interfaced with the existing IEMCAP.

Performance of modern weapons systems is dependent upon the compat-

ible functioning of electrical and electronic subysystems. A typical system

includes numerous such subsystems with their associated interconnecting wires

and, often, with large numbers of antennas for transmission and reception of

required signals. The power and information signals occupy a wide range of the

electromagnetic spectrum, resulting in the need for carefully designed control

*measures to confine them within the spatial, spectral, and temporal limits
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necessary to avoid disruptive interference. Electromagnetic Compatibility

(EMC) assurance is thus an integral and crucial part of subsystem and system

design engineering. Computerized ENC analysis, as provided by the RADC Intra-

system Electromagnetic Compatibility Program (IEMCAP) is a needed tool for

establishing and maintaining cost-effective interference control throughout

the lifetime of a weapon system.

IEMCAP is a link between equipment and subsystem EMC performance

and total-system EC characteristics. It provides the means for tailoring

EMC requirements to the specific system, whether it be ground based, airborne,

or a space/missile system. This is accomplished in IEMCAP by detailed model-

ing of the system elements and the various mechanisms of electromagnetic

transfer to perform the following tasks:

* Provide a data base which can be continually maintained

and updated to follow system design changes.

e Generate EMC specification limits tailored to the specific

system.

a Evaluate the impact of granting waivers to the tailored

specifications.

* Survey a system for incompatibilities.

* Assess the effect of design changes on system EMC.

a Provide comparative analysis results on which to base

EMC tradeoff decisions.

The RADC model is an environmental model in that it is designed

to predict interference in a population of receptors due to a population of

emitters. The basic medium for modeling signals is the frequency domain.

IEMCAP incorporates state-of-the-art communications and EMC

analysis math models into a routine which efficiently evaluates the spectra

and the transfer modes of electromagnetic energy between generators and

receptors within the system.

IEHCAP's combined capabilities provide a versatile framework

which facilitates modification as the state-of-the-art progresses. This

provides a flexibility in updating the program as new or improved mathe-

matical models are developed, and it provides a program which may be easily
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applied to a wide variety of EMC analysis and design problems by utilization

of only the necessary modules for the specific problem.

The program is designed for use by an EMC systems engineer with a

minimum of computer experience. The input data requirements, program control,

and output formats are easily learned and engineering oriented. The input

data is directly obtainable from system and subsystem operational specifica-

tions or measured data. For ease of use, all data input to IECAP is in

free-field format. The entries may be place anywhere on the punched cards.

The overall philosophy and basic analysis approach that had been

designed into the IEMCAP was maintained in the improved modeling development

effort on this c.tract. Each of the improved models and the associated

impact on the IEMCAP is discussed below.

In the original IEMCAP, antennas were assumed to be frequency

independent. Antenna gains were determined by preprogrammed equations for

low-gain types and medium and high gain were represented by multilevel

patterns, in which each level is specified by a gain and associated azimuth

and elevation beamwidths. Provision was made for three discrete gain levels,

which was assumed to be sufficient for representing most antennas. The

development of the proposed antenna model (Task 1) on this effort was based

largely on the results of theoretical antenna modeling. In many cases a

heuristic approach had been applied based on the personal experience of the

designer. There was a noticeable lack of empirical antenna data available,

and a theoretical analysis would have been formidable. Further, antenna

theory is generally based on ideal assumptions which lead to uncertain limita-

tions in the results and must also be validated with measured data.

The problem of antenna modeling reduces to a tradeoff between

generality and accuracy. The more general a model becomes, the less accurate

it will tend to be in representing a wide variety of antennas. A specific

antenna may be modeled reasonably accurately if empirical data describing all

antenna characteristics to be modeled exist. If a model attempts to represent

all antennas of a given type, there can easily be found samples of that class

which do not agree with the model.

* 11-3



Because of the wide degree of variations in the design and con-

struction of conmmercially available antennas of a given type or class, the
assessment of a general model for the type must be made in a statistical sense.

The accuracy of an antenna gain model will have a distribution which has,

hopefully, an acceptably low variance. Since the models are used for EMC

analyses, the mean values of gains should be adjusted toward the high side in

order to provide worst-case or some degree of safety in the predictions. This

arbitrary shift of the mean will increase the variance of the model error.

In consideration of the fact that the proposed antenna models have

not been validated, it was recommended that the models not be implemented

within IEMCAP. It was recommended that the proposed models be coded into a

stand-alone computer program which can be exercised in a validation study

using measurements of actual antennas. In some cases, the validation will

result in adjustments of model parameters, while in other cases, the measure-

ments may result in the need for redesign of certain models. Following some

period of validation and refinement in which the models demonstrate an

acceptable degree of accuracy, the entire model package can be implemented

within IEMCAP by replacing subroutine GAIN.

The system model for IEMCAP employs the standard EMC approach of

coupling. These ports are divided into arrays of emitter ports and of

receptor ports having identifiable coupling paths.

All emitters in a system are characterized by emission spectra

and all receptors are characterized by susceptibility spectra. All ports and

coupling media are assumed to have linear characteristics. Emissions from

the various emitter ports are assumed to be statistically independent so that

1-4



signals from several emitters impinging at a receptor port combine on an

RMS or average power basis. Other waveform parameters that receptors may be

sensitive to are total energy, peak current (or voltage) and rise time. For

example, certain explosive devices are triggered by the burning away of a wire

(resistive heating). This is a total energy susceptibility. Also many

digital devices are susceptible to instantaneous waveform level ("peak"

sensitivity). EMI margins for each of the above has been developed for the

IEMCAP.

Each EMI margin for a particular waveform parameter is defined as

the ratio of parameter value induced at the detector input to the interference

threshold level for this parameter at the detector input. However, in all

cases this computation is transferred to the receptor input port where actual

measurements are more readily obtained.

An EMI margin of value greater than unity indicates interference.

A value less than unity indicates either compatibility or interference. A

minimization of the uncertainty, although the uncertainty is in uccordance

with the "worst case" philosophy of IEMCAP, has been considered in the choices

of the margins actually included in IEMCAP.

A number of important system level EMI problems result from non-

linear effects in emitters and receptors. At the present time, however, the

IEMCAP considers only interference caused by power transferred linearly from

emitter to receptor. To accurately predict all instances of possible EMI, it

was necessary to expand IEMCAP to include interference due to the following

nonlinear effects, which are recognized to cause system performance degrada-

tion:

1) Receiver Intermodulation

2) Spurious Responses

3) Corss Modulation

4) Desensitization

5) Gain Compression and Gain Expansion

This report documents the models developed to describe the effects enumerated

above.
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Several important aspects associated with representing a port's

spectra were modified in the TEMCAP. IEMCAP is required to analyze a large

number of ports with reasonable run times and reasonable computer core memory

requirements. At the same time, it must quickly evaluate the coupling from

any type of emitter port into any type of receptor port and use this result

to perform the variety of tasks discussed above and be adaptable to future

tasks. For specification generation, the spectra must be easily adjustable

at the frequencies where incompatibilitiesare found as well as allow efficient

incorporation of the adjustments for further adjustment. For trade-off and

waiver analyses, the spectra and interference of modified ports must be

efficiently compared to those from previous runs. Also, the spectra are

stored on files and thus becomes readily available for future analyses.

Based on the above criteria, the IEMCAP was designed to use a

sampled spectrum technique in which each spectrum amplitude is sampled at

various frequencies across the range of interest. The new port spectra

algorithm replacing the current "quantization" method in IEMCAP for modeling

a port's spectra incorporates the following:

1) Generate Equipment Frequency Table

2) User Specified Frequency Range for Analysis

(0 to 50 GHz and greater)

3) User defined port spectra of up to 90 frequency -

amplitude points for required and/or nonrequired

frequency ranges

4) Generate frequencies and amplitudes for prestored

emitter and receptor models required by User's inputs

currently required by IEMCAP

5) Generate frequencies and amplitudes for harmonic

signals as directed by User inputs currently

required by IEMCAP

6) Generate frequencies and amplitudes for any port's

non-required spectra using prestored MIL-STDS (461A,

6181D and 704) and the corresponding system dis-

placement factors.
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Basically, the above criteria for the new port spectra model

reduces to a requirement for generating all frequencies and corresponding

amplitudes for defining the port spectra of an equipment. The generation of

the equipment frequency table is accomplished by determining the required fre-

quencies from prestored models, harmonics, nonrequired frequencies from

appropriate MIL-STDS and user specified frequencies from IEMCAP input data.

The port spectra amplitudes are computed from prestored emitter and receptor

models, harmonics, user specified data and prestored military standards models.

It was recognized very early in the project that modification of a

considerable portion of IEMCAP would be required. Since the modification of

IEMCAP was so extensive, detailed flow diagrams were needed for interfacing

the new models. No detailed flow diagrams existed for the IEMCAP and so con-

siderable time and effort was devoted to developing the detailed flows before

interfacing the new models could be accomplished.

To interface the new models it was recognized and agreed that the

order of priority for programming the new models should be 1) new port spectra

model (Task 4), 2) nonlinear effects models (Task 3), 3) nonaverage power re-

ceptor models (Task 2) and 4) new antenna models (Task 1). As a result of the

new user SPECT option associated with the new port spectra modeling, it was

determined that a significant change was required in the narrowband integrated

margin method used by IEMCAP. The integrated EMI margin is an overall figure

of merit representing the ratio of the po-er received by the receptor to

susceptibility over the entire frequency range. The program as originally

designed computes the margin per bandwidth at all spectrum sample frequencies

(both emitter and receptor).

For narrowband emissions, the power received is independent of the

receptor bandwidth, and the integral becomes a summation. For the case where

a user specifies his narrowband spectra, the program performs the appropriate

summation. If the narrowband spectra are represented by prestored models,

then the narrowband components are comp,.ted as originally designed. A signi-

ficant effort was devoted to determining a technique that would be the most

beneficial to the IEMCAP user so as not to compromise his data. An appropri-

ate modification to the existing IEMCAP narrowband integrated margin model was

made. The implementation of the modification to the narrowband integrated

margin calculation involved modifying several existing subroutines in IEMCAP.
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A requirement on this effort was to minimize as much as possible

the amount of increase in computer main memory required to run IEMCAP. The

interfacing of the new models did in fact have an increasing effect on the

main memory requirements. Considerable effort was devoted to this require-

ment and to offset the increased main memory requirement, it was agreed that

the wire map portion of the data processing program (IDIPR) should be removed

and established as an independent program. Making the wire map function a

separate program accomplished 1) a reduction in the computer maim memory

storage requirements and 2) provides a user more flexibility in analyzing

antenna-to-antenna coupling type problems.

The theoretical basis for each of the four tasks discussed above

are separate and distinct but, the integration of these tasks into the exist-

ing IEMCAP code were not handled independently. This report provides complete

and thorough information on the theory of the model development within each

task (separate sections devoted to each task) and the integration of the

developed models into the IENCAF code is presented separately.

models Section 2 presents the frequency dependent power gain antenna

moel for the IEMCAP. The antenna gain model calculates the power gain in

dB of a specified type of antenna at a given frequency and arbitrary direction

relative to the antenna axis. The model consists of four independent terms

which add (in dB) to provide the antenna gain. Section 3 treats the modi-

fication of IEMCAP to predict the electromagnetic interference for devices

in which the compatibility of the device is dependent upon parameters other

than average power. Several models are developed for other waveform para-

meters that receptors may be sensitive to. These parameters are related to

a susceptibility margin. The margins are numbers which indicate the level to

which specified unwanted emissions cause unexceptable receptor performance.

Sections 4 and 5 present further modifications to the IEMCAP.

Section 4 introduces the development of system level nonlinear models which

expands the capabilities of IEMCAP to allow predictions of performance degra-

dation for several nonlinear receptor effects. The models developed to

describe nonlinear effects are based on a "modified" Volterra Series which is

a hybrid technique combining aspects of both the Power Series and the Volterra
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Series. Effects which can not be described by the Volterra approach, due to

the nature of the nonlinearities involved, are based on empirical data.

Section 5 presents a new model which replaces the current "quantization"

method for modeling a port spectra. This new model provides the capability

for a user to model the required and nonrequired portions of an emitter and

receptor port spectra using the prestored models in IEMCAP.

The interfacing of the above models with the IEMCAP is presented

in Section 6. Where applicable the new models where integrated into the

existing IEMCAP. The overall philosophy of the IEMCAP has been maintained

and emphasis placed on segmenting the program to keep down computer main

memory requirements.

1-9



2.0 FREOUENCY-DEPENDENT MODELING OF ANTENNA GAIN

It is desired to develop computer algorithms which provide the

numerical value of power gain (relative to that of an isotrope) for a

specified type of antenna at a specified frequency and spatial direction. The

power gain model is intended for use in program IEMCAP, replacing the relatively

simple frequency independent model that currently exists.

The words "antenna gain" immediately bring to mind the ideal of a

three-dimensional radiation pattern of lobes and nulls describing the spatial

radiation levels in azimuth and elevation from the antenna. Antenna theory

books abound with antenna patterns that are derived for ideal, lossless antennas.

Peak values associated with these patterns are generally relative to a lossless

isotropic radiator. While radiation patterns are vitually important, they

represent only one of the terms to be considered in the overall power gain

model for antennas. In order to provide an absolute level of power gain, the

model must account for several types of power losses associated with real

antennas which directly subtract dB's from the ideal radiation pattern function

fox the antenna. In many cases these power losses dominate the performance of

an antenna. Unfortunately, antenna textbooks seldom address this aspect.

The allocation of power delivered to an antenna system is diagrammed

in Figures 2-la and 2-lb. A conventional arrangement is assumed here. in which an

rf power source delivers power through a transmission line or waveguide to the

input terminals of the antenna. Since the antenna may generally have some kind

of feed circuitry such as a balun, matching network, filter, multicoupler, etc.,

which is often an integral part of the antenna, particularly for commercially

manufactured anteqnas, the antenna terminals are assumed here to be the input to

the feed circuit/antenna combination. The transmission line or waveguide is

generally lossy and reduces antenna power before it reaches the antenna terminals.

The second loss of antenna power is the reflection of power back toward the

source due to impedance mismatch between the transmission line and the antenna

terminals. Power which is absorbed by the antenna may be further degraded by

a) ohmic heating losses in the matching network and/or in dielectric materials

associated with the antenna and by b) the effects of capacitive shunting between

conductors and between conductors and ground in the base feed circuits, particu-

larly at frequencies considerably higher than the design band frequencies.
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The remaining power is that which is radiated into space, and it is this

final power level which applies to the radiation pattern function for the

antenna.

Consequently, the overall power gain function, alternately referred

to as antenna gain, consists of four terms. The first term is the trans-

mission line loss; the second is the impedance mismatch factor; the third is

due to internal losses of the antenna, and the fourth term is the radiation

pattern which gives the directive gain at specified angles in space.

When these terms are expressed as linear quantities, their product

gives the total antenna gain. If expressed logarithmically as dB's their sum

provides the total gain value.

For this study each of the terms is considered separately. This

report describes the analysis effort and presents the results of the proposed

models. The proposed models could be applied to active receiving antennas but

require separate consideration of the parameters for the receiving and trans-

mitting m. des, since these antennas are non-reciprocal. The nonlinear aspects

of active antennas are not considered in this study.

It should be noted that while the approach taken here is based on

the behavior of a transmitting antenna, the law of reciprocity ensures that

the same gain factors will apply when the antenna functions as a passive

receiver.
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2.1 Modeling the Impedance Matching Factor of Antennas

The power delivered to an antenna connected to a lossless trans-

mission line of characteristic impedance Z at frequency f is determined from

the input impedance Z of the antenna. First, the reflection coefficient r at

the antenna terminals is given by

z -ZZio
r =

i+o

Since In represents the fraction of forward voltage or current in

the line that is reflected at the antenna terminals due to impedance mismatch,

Ir1 2 represents the fraction of incident power Pi reflected by the antenna

load. Thus, the fraction of incident power delivered to the load or absorbed

by the load (power radiated if the load is a lossless antenna) Is

P I 12__- = - Irn
Pi

This ratio expressed in decibels is termed the impedance matching factor* FE.

22P 
2

= 10 log(1-Irl2).

Note that when Irl _ .707, then P 1

This corresponds to the half-power or -3 dB condition of the load.

The study analysis described here first considers dipole antennas

without feed circuitry, and this is followed with analyses of the effects of

matching networks on the power transfer characteristics of the dipoles over a

wide range of frequencies. Finally, the impedance matching factors for other

types of antennas are considered.

Since P<P4,then F <0. Thus, the impedance matching factor as defined here

is always a negative quantity.
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2.2 Power Transfer Characteristics of a Dipole Without Feed Circuitry

Curves of the impedance matching factor for ideal dipoles over

a wide range of frequencies have been computed using the analytical approxima-

tion developed by Schelkunoff [la, Chap. X to lb, pages 421-432] for the input

impedance of ideal, lossless dipole antennas. Both the biconical and cylindri-

cal dipoles, illustrated in Figure 2-2, were studied.

a a

h h
'I -1--P_ -. 4~zi zi ----/1 0

Conical Cylindrical

Figure 2-2 Conical and Cylindrical Antenna Shapes
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According to Schelkunoff's mode theory for dipole antennas, the

input impedance Z is given by [la, pages 453, 460, 461].

Z, KR asinkh + J(X a-N)sinkh .- (K a-M)coskh]

[ (K a+M)sinkh + (X a+N)coskh] -JR aCosk

where R a 60(Y+ RZn 2kh - CUMk)

+30(y+ Znkh - 2Ci2kh ± C14kh)cos 2kh

+30(Si4kh -2Si2kh)sin 2kh

X a 6OSi2kh -30(Y+ lnkh -C14kh)sin 2kb

-3OSi4kh cos 2kh

Six -si u du (sine integral)

J0 u

Note: Ciax = Y + tax -Cix = -cosu du
Jo u

y - 0.5772... (Euler's constant)

For the conical dipole:

K 120 Pn 
2h

a a

M- 0

N- 0

For the cylindrical dipole:

K - 120 (4Rn-h-l)
a a

M-60(Xn 2kh - C12kh + Yf-1 + cos2kh)

N - 60(Si 2kb - sin2kh)

The apparent limitations of the above expressions are that a) the

conical angle is small such that tan T=k'T - [1a, pages 446, 4541, and b) the
h

length h < .75A~ (lb, page 426].
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The above expression for Z was evaluated in a minicomputer for

conical and cylindrical dipoles of various h/a ratios over a frequency range

corresponding to electrical lengths from h=O to h =3.3X. The resulting curves

of F Z based on Z 0= 50 ohms are presented in Figures 2-3 through 2-12 for the

conical dipole, and Figures 2-13 through 2-19 for the cylindrical dipole. Also

obtained from this study were plots of the complex input impedance or Smith

Chart coordinates for the same dipole conditions. The concial case is shown

in Figures 2-20 through 2-29, and the cylindrical case Is Presented in
Figures 2-30 through 2-39.

For the Smith Chart plots, the horizontal line represents the real

impedance axis with zero ohms (short circuit) at the left end, and infinite

ohms (openz circuit) at the right end. At the center is the characteristic

impedance of the transmission line which was assumed to be 50 ohms for all

calculations. The outer circle represents the reactance axis with inductance

along the upper semicircle and capacitance along the lower semicircle. Thus

complex inductive impedances plot within the upper semi-circular region and

complex capacitive impedances in the lower semicircular region. The Smith

Chart is actually a polar plot of complex reflection coefficient. The outer

circle represents Inl- 1, and the center represents r -0. The dashed circle

represents Inl- .707 or half-power level. Thus, all points within the dashed

circle correspond to an impedance mismatch that reflects less than half the

incident power, and all points outside indicate reflection of more than half

the incident power.

The Smith Chart contours begin at the right edge where the impedance

is highly capacitive. The impedance generally spirals inward in a clockwise

direction with increasing frequency. All crossings of the contour with the

real axis represent points where the impedance is resonant or anti-resonant.

All crossings on the left side of the contour spiral are resonances where the

impedance is real and relatively low. These points correspond to the resonant

peaks in the curves of F Z' All crossings on the right side of the contour

spiral are antiresonance points where the impedance'in real and relatively

high. These points correspond to the nulls between the resonant peaks in the

curves of F Z
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Figure 2-3 Impedance Matching Factor of Ideal Conical Dipole (h/a = 106)
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Figure 2-4 Impedance Matching Factor of Ideal Conical Dipole (h/a - 104)
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Figure 2-6 Impedance Matching Factor of Ideal Conical Dipole (h/a - 300)
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Figure 2-9 Impedance Matching Factor of Ideal Conical Dipole.(h/a =20)
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Figure 2-11 Impedance Matching Factor of Ideal Conical Dipole (h/a 5)
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Figure 2-12 Impedance Matching Factor of Ideal Conical Dipole (h/a - 2)
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Figure 2-13 Impedance Matching Factor of Ideal Cylindrical Dipole (h/a = 106)
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Figure 2-14 Impedance Matching Factor of Ideal Cylindrical Dipole (h/a - 104)
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Figure 2-18 Impedance Matching Factor of Ideal Cylindrical Dipole (h/a - 50)
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Figure 2-19 Impedance Matching Factor of Ideal Cylindrical Dipole (h/a = 20)
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Figure 2-21 Smith Chart of Ideal Conical Dipole ( h/a 104o)

Figure 2-22 Smith Chart of ideal Conical Dipole (h/a 1,000)
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Figure 2-23 Smith Chart of Ideal Conical Dipole ( h/a =300)
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Figure 2-29 Smith Chart of Ideal Conical Dipole (h/a 2)
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Figure 2-31 Smith Chart of Ideal Cylindrical Dipole( h/a 1,00)
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Figure 2-34 Smith Chart of Ideal Cylindrical Dipole (h/a 1 00)
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Figure 2-35 Smith Chart of Ideal Cylindrical Dipole (h/a 2 0)
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Figure 2-37 Smith Chart of Ideal Cylindrical Dipole (h/a -10)
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Figure 2-38 Smith Chart of Ideal Cylindrical Dipole (h/a =5)
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Figure 2-39 Smith Chart of Ideal Cylindrical Dipole (h/a 2)
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Since the calculations were performed at discrete frequencies

the contours as shown consist of a series of straight-line segments connecting

the data points. The computational increment has hIA= .01 or 1% electrical

wavelength. Consequently, in many cases it is possible to measure the 3-dB

bandwidth of a resonant peak by counting the number of line segments along the

contour as it passes within the dashed circle.

Analyses were performed to model the common features of the trans-

mission loss curves which will be significant for use in program IEMCAP. These

features are the following:

1. Multiple occurrence of resonant peaks.

2. Selectivity of each resonant peak.

3. Nulls between resonant peaks.

4. Infinitte fall-off below first resonant peak.

The shapes of the transmission loss curves in the vicinity of the

first resonant peak were examined in detail in an attempt to find a simple

algebraic expression which would model the curves with a reasonable degree of

accuracy. Plots of the transmission loss on an expanded scale shoving the

first resonant peaks are presented in Figures 2-40 through 2-49 for the comical

case, and Figures 2-50 through 2-59 for the cylindrical case. A natural choice

for the model is the resonance function for a series RLC circuit. The uni-

versal resonance curve [2, page 143] can be expressed in the form

I
Ir2

Vl+ [(f 
fJ

where
I -input current at frequency f

I ' input current at resonance f -fr r
Q - circuit Q

fr - resonant frequency
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Figure 2-42 Impedance Matching Factor of First Resonance
of Conical Dipole (ha - 1,000)
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Figure 2-43 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a -300)
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Figure 2-44 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a f 100)
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Figure 2-45 Impedance Matching Factor of First Resonance

of Conical Dipole (h/a - 50)
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Figure 2-46 Impedance Hatching Factor of First Resonance
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Figure 2-47 Impedance Matching Factor of First Resonance
of Conical Dipole (h/a -10)
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Figure 2-50 Impedance Hatching Factor of First: Resonance
of Cylindrical Dipole (h/a - 0')
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Figure 2-51 Impedance Matching Factor of First Resonance

of Cylindrical Dipole (h/a - 106)
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Figure 2-52 Impedance Matching Factor of First Resonance
of Cylindrical Dipole (h/a 1,000)

* Figure 2-53 Impedance Matching Factor of First Resonance
of Cylindrical Dipole (h/a - 300)
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Figure 2-56 Impedance Matching Factor of First Resonance
of Cylindrical Dipole (h/a = 20)
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Figure 2-57 Impedance Matching Factor of First Resonance

of Cylindrical Dipole (h/a - 10)
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Figure 2-58 Impedance Hatching Factor of First Resonance

of Cylindrical Dipole (h/a 5)
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Figure 2-59 Impedance Hatching Factor of First Resonance

of Cylindrical Dipole (h/a - 2 )
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The power delivered to the circuit is 12 I, if R is assumed to be

constant with frequency, we have

where Pr =power delivered to the circuit at resonance.

henP 1 2.)

When P we have Q2Or 1
Prr

from which the following relationships can be derived:

f

f2-f fr 12
2 1

where f1 = frequency below resonance at the one-half power level.

f= frequency above resonance at the one-half power level.

Let the circuit bandwidth be defined as

BW = f 2-f1

so that
Q - _r

BW"

The Q and resonant frequency of each of the curves in Figures 2-40

through 2-58 were determined from the half power points associated with f1 and f2 "

The curve in Figure 2-59 for cylindrical dipole with h/a = 2 does not appear to be

valid and was not included in this analysis. The theoretical antenna equations

appear to be unreliable for excessively low values of h/a. The universal

resonance function was then applied to four dipole curves presented in

Figures 2-60 through 2-63. The universal resonance curve is shown superimposed

on the theoretical transmission loss curve. The resonance value plotted is

F = 10 P -
r

-- 10 log [1+ Q2 (f- -

As can be seen in these figures, there is not good agreement since

the universal resonance curve is above the dipole curve for frequencies below

resonance and is below the dipole curve above resonance in all cases shown.

This discrepancy is reasonable if one considers the antenna to behave as a
2series RLC circuit in which the R is approximately proportional to f
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Figure 2-61 Comparison Between Theoretical and Model Curves
of Impedance Matching Factor at First Resonance
(Cylindrical, h/a - 106)
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Accordingly, the Q of the antenna increases as frequency drops below resonance.

Since Qr may be expressed as

X
Q

where X f inductive or capacitive reactance of a series RLC circuit,

let

where

R' = R.

Then, 
2

With Q replaced by 0' in the universal resonace function, we have

the following modified resonance function.

P f

-- r

The values from this function are shown plotted on Figures 2-60 and 2-61 and indi-
cates over-correction. The correction is in the proper direction but is nearly

double of that needed. A modification using
f

Q' =fQ
was then tried, and the results shown in Figures 2-60 through 2-63 appear to give

excellent agreement. Thus, the modified universal resonance function found to

model the selectivity of the first resonant peak of dipole impedance matching

factor is

p 1
P-r (f (f)]2

1+ 
2

+ Q
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This same function tested down to a dipole half-length h = X/60

for several high and low Q samples of first resonant peaks is shown in Figures 2-64

through 2-69. As can be seen, the function agrees well with the theoretical

impedance matching curves down to levels less than -50 to -60 dB. It is

reasonable to accept this function for modeling the impedance matching of a

dipole down to DC (or a practical limit of 1 Hz).

Additional tests of this'function for modeling resonant peaks of

higher order were made for various high and low Q dipoles. The function was

applied directly to each peak curve without shifting the frequency coordinate,

but since the higher order resonant peaks generally drop below the 0 dB axis,

the value of Fz given by the function was offset by the value of the resonant

peak. That is, given f r' Q and F.[max] = peak value of Fz at f=f for the

ith resonant peak, the model curve computed for fr and Q was shifted downward by

F z[max]. It was found that the degree to which the empirical function fit a

theoretical resonance curve was highly sensitive to the specific value of Q

measured for the curve. Since Q is determined from estimates of the 3-dB bandwidth

measured relative to the level of the resonant peak, it was found necessary to

re-calculate the resonant peaks of Fz with a high degree of resolution. These

data permitted an accurate determination of the peak value F [max], center fre-

quency fr' the Q, and bandwidth BW = f2-fl. The results are presented in

Table 2-1. The frequency scale is arbitrary: however, for convenience, it was

scaled to one unit per h/A = 1/60 (each tic mark in the high resolution plots,

e.g., Figures 2-40 to 2-69, or h/A = 1/6 per tic mark in low resoltution plots,

e.g., Figures 2-3 to 2-19.

Various samples of the model function plotted at high-order

resonant peaks are presented in Figures 2-70 through 2-85. In general, the model--

ing is good at the peaks and at the upper parts of the selectivity skirts, but

falls below the skirts in the lower regions. On the low-frequency side, the

model agrees well down to a level (in dB) of one-half or two-thirds of the

null depth, whereas on the high-frequency side the agreement is good only

above the one-third to one-half null depth level. Some of this discrepancy in

the lower skirt region can be overcome by using a model curve with a lower Q.

As will be shown, however, the resonant peaks will, in fact, require modeling

at wider bandwidths than shown.
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Table 2-1

Calculated Quantities of Dipole Resonant Peaks

Antenna Peak No.fr W-Q Fmajqj

Conical 6  1 14.21 1.174 12.10 - .06
Cha=lO 2 44.27 1.501 29.50 - .48

3 74.29 1.640 45.31 - .71
4 104.30 1.730 60.28 - .86
5 134.31 1.798 74.71 - .93
6 164.31 1.842 89.21 -1.07

Conical 1 13.60 1.97 6.89 .00
(h/a-1000) 2 43.70 2.59 16.89 - .38

3 73.74 2.83 26.05 - .63
4 103.76 2.98 34.79 - .79
5 133.78 3.09 43.27 - .91
6 163.79 3.17 51.59 -1.00

Conical 1 13.12 2.55 5.15 - .02
(h/a=100) 2 43.24 3.44 12.57 - .32

3 73.29 3.77 19.42 - .57
4 103.33 3.98 25.97 - .74
5 133.35 4.12 32.35 - .86
6' 163.36 4.23 38.59 - .96

Conical 1 12.55 3.23 3.89 - .12
(h/a=20) 2 42.61 4.55 9.37 - .26

3 72.67 5.04 14.42 - .51
4 102.71 5.32 19.29 - .68
5 132.73 5.52 24.03 - .81
6 162.75 5.67 28.69 - .91

Cylindrical 1 14.77 1.43 10.34 - .13
(h/a=106) 2 44.74 1.86 24.03 - .50

3 74.74 2.07 36.17 - .69
4 104.73 2.20 47.61 - .81
5 134.73 2.30 58.51 - .90

6 164.73 2.39 69.03 - .97
Cylindrical 1 14.58 2.86 5.09 - .09
(h/a-1000) 2 44.49 3.91 11.38 - .39

3 74.47 4.40 16.92 - .55
4 104.45 4.73 22.07 - .65
5 134.44 4.98 27.01 - .72
6 164.43 5.18 31.77 - .77

Cylindrical 1 14.45 4.30 3.36 - .05
(h/a-100) 2 44.21 6.26 7.06 - .29

3 74.09 7.28 10.18 - .41
4 104.00 7.99 13.02 - .49
5 133.91 8.56 15.65 - .55
6 163.83 9.04 18.12 - .59
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- Figure 2-70 Comparison Between Theoretical Impedance Matching
~Factor and the Model at Second Resonance
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Figure 2-70 Comparison Between Theoretical Impedance Matching
Factor and the Model at Secird Resonance
(Conical, h/a - 10')
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Figure 2-71 Comparison Between Theoretical Impedance M4atching
Factor and the Model at Third Resonance
(Conical, h/a - 10')
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Figure 2-72 Comparison Between Theoretical Impedance Matching

Factor and the Model at Fourth Resonance
(Conical, h/a = 106)
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Figure 2-73 Comparison Between Theoretical Impedance Matching

Factor and the Model at Fifth Resonance
(Conical, h/a- 106)
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Factor and the Model at Sixth Resonance
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Figure 2-77 Comparison Between Theoretical Impedance Matching
Factor and the Model at Second Resonance
(Conical, h/a - 100)
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.1 Figure 2-78 Comparison Between Theoretical Impedance Hatching
Factor and the Model at Third Resonance
(Conical, h/a - 100)
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Figure 2-79 Comparison Between Theoretical Impedance Matching
Factor and the Model at Sixth Resonance.
(Conical, h/a - 100)
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Figure 2-80 Comparison Between Theoretical Impedance Matching
Factor and the Model at Second Resonance
(Cylindrical, h/a 106)
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Figure 2-81 Comparison Between Theoretical Impedance Matching
Factor and the Model at Third Resonance
(Cylindrical, h/a = 106)
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L Figure 2-82 Comparison Between Theoretical Impedance Matching
Factor and the Model at Sixth Resonance
(Cylindrical, h/a- 106)

h/X

' -

M Modified resonance function
model

Figure 2-83 Comparison Between Theoretical Impedance Matching
Factor and the Model at Second Resonance
(Cylindrical, h/a - 1,000)

2-53

Ot



Lh/X
-- I.i

I .I

F@"I e

= Modified resonance function
model
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Figure 2-85 Comparison Between Theoretical Impedance Matching
Factor and the Model at the Sixth Resonance
(Cylindrical, h/e - 1,000)
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Composite plots of model curves for the first six resonant peaks

are shown in Figure 2-86 for a high-Q dipole and in Figure 2-87 for a low-Q dipole.

The most significant aspect seen in these figures is the inability of the model

function to model the null regions well between resonant peaks. This must be

handled with a separate function. It is noted that the first resonant peak is

modeled best. In particular, the upper skirt of the first peak is modeled

better than that of any higher order peak. It may be desirable to apply the

model function to the higher peaks by shifting the origin of the model curve

upward in frequency from the first peak. This could improve modeling of the

upper skirt of each peak, but is appears that agreement with the lower skirt

would suffer.

it has been demonstrated that the modified universal resonance

function appears to provide a reasonable model for the first six resonant

peaks of F Z for an ideal dipole. The model function must be applied inde-

pendently to each peak with a specific center frequency and bandwidth or Q.

In order to accomplish this, it is necessary to determine apparent functional

relationships between the resonant frequencies and bandwidths of higher order

peaks given the center frequency and bandwidth of the first resonant peak for

high and low Q dipole antennas. The data presented in Table 2-1 were examined

in detail to develop these relationships.

a. Resonant Frequencies

Let f and Q (n=1,2,3 ... ) denote the resonant frequency and Q ofn n
the nth resonant peak, respectively. The differences between successive

resonant frequencies for each antenna type given in Table 2-1 were calculated.

These differences divided by f 1 were found to be constant for the higher order

resonances of each antenna. Consequently, an expression giving the nth

resonant frequency in terms of the normalized frequency separation A..(f i-f i1)Af1
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Antenna Normalized Spacing, A

CONICAL (10 6 2.11

CONICAL (1,000) 2.21

CONICAL (100) 2.295

CONICAL (20) 2.395

CYLINRICA(106 20
CYLINDRICAL (1,0) 2.03

CYLINDRICAL (1,00) 2.05

These values indicate that, in general, the relative spacing between

resonant peaks is slightly more than twice the first resonant frequency. Since

A decreases with increasing antenna Q (of the first resonance) for the conical

and cylindrical dipoles considered separately, A was plotted against log Q 1 as

shown in Figure 2-88. The values of A are significantly different for the two

types of dipoles. The reason for this is unknown at this time, and it will be

necessary to accept the spread in the values of A for a specified Ql.

Lest it be assumed that for a given Q., the value of A can range

from 2.00 to the value given by the conical curve in Figure 2-88. An empirical

curve fit to the conical values results in the following:

A - 2.00 +1.2

* b. Bandwidths of Resonant Peaks

The 3 .dB bandwidths given in Table 2-1 are shown plotted in Figure 2-89.

Although the bandwidth values exist through the points in order to describe the

functional relationship. As can be seen, the resonant bandwidths increase

nearly linearly with log frequency.

These same data normalized to f 1 (first resonant frequency) for

each antenna are listed in Table 2-2 and plotted in Figure 2-90. Since the curves

appear to converge to a single point, it is possible to develop an expression

to represent the curves given the bandwidth of the first resonance. This

general function could be used for all monopole and dipole antennas since the

only parameter required is the first resonant bandwidth. The independent

variable is the center frequency of higher order resonances. As shown in (a)

above, these frequencies cannot be predicted precisely for any given antenna,
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Table 2-2

Normalized Resonant Frequencies and Bandwidths

Antenna Peak No. fn/fl BW/f
6

CON(106) 1 1.00 .0826
2 3.12 .1056
3 5.23 .1154
4 7.34 .1217
5 9.45 .1265
6 11.56 .1296

CON(103 1 1.00 .1449

2 3.21 .1904
3 5.42 .2081
4 7.63 .2191
5 9.84 .2272
6 12.04 .2331

CON(100) 1 1.00 .1944
2 3.30 .2622

3 5.59 .2873
4 7.88 .3034
5 10.16 .3140
6 12.45 .3224

CON(20) 1 1.00 .2574
2 3.40 .3625
3 5.79 .4016
4 8.18 .4239

5 10.58 .4398
6 12.97 .4518

CYL(106) 1 1.00 .0968
2 3.03 .1259
3 5.06 .1401
4 7.09 .1490
5 9.12 .1557
6 11.15 .1618

3
CYL(103) 1 1.00 .1962

2 3.05 .2682
3 5.11 .3018
4 7 16 .3244
5 9.22 .3416
6 11.28 .3553

CYL(100) 1 1.00 .2976
2 3.06 .4332
3 5.13 .5038
4 7.20 .5529
5 9.27 .5924
6 11.34 .6256
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but have a range of values based on A ranging from 2.00 to the value given by

the expression in (a). Modeling the higher order resonances while taking

into account this spread in resonant frequncies is accomplished as follows.

The bandwidth of any resonant peak must be increased by an amount equal to the

spread of possible resonant frequencies for the peak. In this manner the

modeled bandwidth contains the bandwidth of a resonant peak occuring at any

frequency within the assumed range. Figure 2-91 illustrates this process.

Curve A represents a resonant peak occurring at frequency f a calculated with

A = 2.00. Curve B represents the same resonant peak occuring at frequency fb

calculated with the upper limit of A. The 3-dB bandwidth BW is assumed the

same for both peaks. Since the 3-dB level of the resonance curve can range

between frequencies f and fh' the bandwidth BW' of the model peak is set equal

to this range. The resulting curve is therefore wider (of lower Q) than the

theoretical curve but provides worst-case protection of the impedance matching

factor for an IEMCAP analysis.

These calculations have been performed using the data in Tables 2-1

and 2-2 for the conical dipoles. The resulting values in Tables 2-3. The Q of

each model peak has also dedn calculated and is shown plotted as a function

of normaiized redonant frequency in Figure 2-92. This figure, then, shows the

family of curves to be used by the model to provide the Q of a resonant peak

at any given normalized frequency for a specified Q of the first resonant

peak.

An empirical expression has been developed to fit the curves in

Figure 2-92. Each of the lines is assumed to be straight, and their slightly

different slopes are assumed to be the same. The expression is of the form

y = mx+b

where y = log Q

m - 0.115
f

x = log ( )
f1

b - log QI.

The complete expression is

log Qn = 0.115 log (f)+log Q1
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Table 2-3

Bandwidth Spread*

Antenna Peak No BW fb-f BW' fn Qn**
6

CON(106) 2 .1056 .1129 .2185 3.055 13.98
(QI=12.10) 3 .1154 .2258 .3412 5.110 14.98

4 .1217 .3388 .4605 7.166 15.56
5 .1265 .4517 .5782 9.221 15.95
6 .1296 .5646 .6942 11.277 16.24

3
CON(103) 2 .1904 .2116 .4020 3.101 7.71

(QI=6.89) 3 .2081 .4231 .6312 5.203 8.24
4 .2191 .6347 .8538 7.306 8.56
5 .2272 .8463 1.0735 9.408 7.76
6 .2331 1.0579 1.2910 11.511 8.92

CON(100) 2 .2622 .2927 .5549 3.137 5.65
(Qt=5.15) 3 .2873 .5854 .8727 5.277 6.05

4 .3034 .8781 1.1815 7.417 6.28
5 .3140 1.1708 1.4848 9.558 6.44

6 .3224 1.4634 1.7858 11.699 6.55

CON(20) 2 .3625 .4002 .7627 3.182 4.17
(O.i-3.89) 3 .4016 .8004 1.2020 5.370 4.47

4 .4239 1.2006 1.6245 7.560 4.65

5 .4398 1.6008 2.0406 9.750 4.78
6 .4518 2.001 2.4528 11.940 4.87

* Values are normalized to fl.

f

n - BW
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The normalized frequencies at which the higher order resonances

occur, given in Table 2-3, have also been generalized. The frequency differences

between successive peaks have been calculated for each antenna case in Table 2-3

and are remarkably constant for each antenna. The average differences,

corresponding to A described in Figure. 2-88, are the following.

Qof First Resonance A

12.10 2.055
6.89 2.102
5.15 2.140
3.89 2.188

An empirical curve fit to these values is the following:

A =2+0. 8178Q -1.*083

This expression is to be used in the model to provide the nth resonant fre-

quency f
n

f n= f I (l+(n-l)A]

Thus, for given values of f 1 and Q1of the first resonant peak of any simple

monopole or dipole antenna, the resonance curves are defined by the above

three expressions for resonant peaks of order n.

c. Decay of Resonant Peaks with Frequency

The theoretical curves of impedance mismatch factor as shown in

Figures 2-3 through 2-19 generally indicate a rather slow decay or fall-off of the

resonant peaks with frequency. This decay is too slight to be significant and

is ignored in the model.

The Smith chart plots of these data (Figures 2-20 through 2-39)

generally indicate that the impedance contour spirals inward toward an

asymptotic point near the dashed circle or 3-dB loss level. Consequently, the

peak decay would eventually drop to no more than about -3 dB, which is not a

significant level for modeling this feature of the impedance mismatch factor.

Further, measured data indicate very little decay of higher order resonances,

as will be shown.
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d. Null Depth

The minimum impedance mismatch factor occurring between resonant

peaks is an important feature to be included in the model. Two aspects of null

depth are evident. First, the depth of the first null (between first and

second resonance) must be defined, and second, the decay of null depth with

frequency should also be defined.

The depth of the first null is shown plotted against log Q, in

Figure 2-93 for each case of the conical and cylindrical dipoles. As can be

seen, the relationship is nearly linear. A curve fit to the cylindrical data

line gives the following:

Fz = 3.6-21.1 log Q1

The relationship of the higher order nulls is an exponential decay

with log frequency. The theoretical values of null depth for the conical

(h/a - 106) dipole (Figure 2-3) were used to examine the null decay. An

empirical fit to these data points gives the relationship

F - -3-13.9 h -0.124
z

A more desirable form of this relationship is an exponential form given by

Fz = 3 16 .53,-O.288(log 
f/f')

where f' frequency at which h-X/4, and the logarithm is base 10.

For the present, the expressions for null depth will be given in

general form with unspecified constants. It appears, after examining measured

antenna data, that the null depth is not as much as the theory predicts and

the decay rate is considerably greater than that given above. Apparently, null

depth is sensitive to several aspects of real antennas which were not accounted

for in the theoretical model, e.g., losses, imperfections at the feed point,

nonaxial directed currents, and nonrotationally symmetric currents.
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2.3 teasured Data of Resonant Antennas

It is essential that the measured performance of antennas at

out-of-band frequencies be studied during model development. Theoretical

analyses of antennas generally do not predict performance characteristics very

realistically, particularly at frequencies well outside the design band. The

assumptions usually made in analyses minimize the error within the design band

but often cause significant properties to be overlooked at frequencies out-of-

band. The assumptions most commonly made are that the antenna is lossless,

the current distribution is rotationally symmetric, and the current flow (in a

linear antenna) is axial (the element is thin). The use of baluns with many

antennas is commonplace: however, theoreticians seldom include baluns in their

antenna models. Although a widL variety of balun designs exist for transform-

ing an unbalanced line (e.g., coaxial cable) to a balanced line (e.g., dipole),

they cannot be ignored as a part of the antenna. Wideband baluns, such as a

transformer with primary and secondary windings, probably have the least

effect on the out-of-band performance of antennas. Many baluns, however, are

frequency selective and require tuning to the operating range of the antenna.

These types of baluns are essentially transparent at frequencies in the design

band, but they can have considerable effect on input impedance at frequencies

outside the design band. Where a balun is used, it should be considered as

being an integral part of the antenna and be included within the antenna

terminals.

It should be clear that a balun is not principally a matching net-

work for matching a reactive antenna impedance with 50 ohms. The majority of

baluns transform 50-ohm unbalanced to 50-ohm balanced lines. Some baluns,

however, do transform a 50-ohm impedance to some integral multiple of 50 ohms.

The effects of matching networks are studied in the next section.

Unfortunately, measured out-of-band frequency data for anten ,as

4 are very sparse in the technical journals. Figures 2-94 through 2-102 present

curves of impedance matching factor derived from measured data for various

types of single element resonant antennas. Several of the measurements were

published, but most of the data were measured by ARC. The principal features

to be derived from each of these results are described below.
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Figure 2-94 Impedance Matching Factor of 6-Inch Monopole
(from measured data)
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Figure 95 Impedance Matching Factor of Dipole with Tunable Balum

(f rom measured data)
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FREQUENCY GHz

Figure 2-96 Impedance Matching Factor of Dipole With Tunable
Bazooka Balun (from measured data)

FREQUENCY GHz

Figure 2-97 Impedance Matching Factor of Bovtie Dipole(from measured data)
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Figure 2-98 Impedance Hatching Factor of Biconical Dipole
(from measured data)

FREQUENCY MHz
2,10oo10 ,O qw0 ,,zO.

- III -I-"/

-4 -, "- , I 

<V V ; i . I 44 7L iL

m "  I - -....---..--....... I- 7.. ... 1-

"7 4'-
A- i ,

1 ' I I i I t I

Figure 2-99 Impedance Matching Factor of a Duoconical Monopole
(from measured data)
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Figure 2-100 Impedance Matching Factor of a Sleeve Dipole
(from measured data)
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Figure 2-102 Impedance Matching Factor of a Sleeve Dipole
(from measured data)
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Figure 2-94 presents the impedance matching factor of a model
cylindrical monopole 0.25" diameter and 6" high over a ground plane, giving an

h/a ratio of 24. [3, pages 86, 87] Apparently, no feed circuitry or balun was

required, as expected. The curve illustrates the predicted resonant peaks

with a frequency spacing of about 2.0f1 . Unfortunately, no data were taken

below f to give a measure of QI. Ccmparing this curve with that of Figure 2-19

for a cylindrical dipole of h/a-20, the depth of the first null is nearly twice

that predicted by the theory. The second, third and fourth nulls are that

reasonably close to the theoretical depth of -4 dB. For the measured case,

the resonant peaks rise with frequency, and secondary resonances appear as

seen in the minor peak between the fourth and fifth resonant peak. It is

suspected that the feed connection created some high frequency effects. In all,

the antenna is not very lossy at any frequency shown above the first resonance

to 1Of1. The impedance matching factor tends to increase as the frequency

increases.

Figure 2-95*presents FZ for a horizontal dipole having a tunable

balun. The resonant frequency was set to 400 MHz. The second and third

resonant peaks occur at the expected frequencies, but the behavior above the

third peak is unpredictable. This is most likely due to the properties of the

balun. Based on h/a ratio of 20 to 30 for this dipole, the depth of the first

null is twice the theoretical value (see Figures 2-18 and 2-19). The depth of the

second null agrees with theory. The Q of the second peak is nearly twice that

of the first peak, which agrees with the theory.

Figure 2-96* shows the Fz curve of another small, horizontal dipole

tuned for approximately 400 Mz. This dipole has a bazooka balun which is

also tunable. The measurement, made only to 5fl, show the first and second

resonant peaks. The behavior above the second peak is unpredictable. The null

depths are deeper than theory would indicate, which is due probably to fre-

quency selective properties of the balun.

Test antenna measured by ARC.
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Figure 2-97*presents FZ of a broadband bow-tie (dipole) antenna
having a broadband transformer-couple balun. Each element of the antenna is

a flat piece of copper having the shape of the profile of a conical dipole

with an apex angle of 70*. The design band was intended to be 180-600 Miz,

but the curve indicates good impedance up to about 2 GHz. The shape of the FZ

curve for this antenna does not agree with the theory used and will require

special considerations for modeling.

Figure 2-98*presents the F, data for a commercial biconical dipole

constructed of aluminum tubing in the form of a conical cage. The shape of

the elements is more accurately described as being duoconical with the transi-

tion planes located about 2/3 h from the center. This antenna contains a

coiled-cable balun in the feed box. The design frequency range is 88-130 MHz.

As can be seen FZ is very erratic and does not appear to agree with theory.

The cone angle is 700. The maximum loss measured, however, was about 7 dB.

Figure 2-99 presents the results of an interesting study to design

a broadband monopole. [4] The shape is duoconical with the transition plane

at about .2t from the base. The transition corner was rounded to provide a

smooth, teardrop shape. As can be seen, the antenna is remarkably good from

500 or 600 MHz to at least 1400 MHz. The shape of the curve does not agree

with the results given for the conical or cylindrical types. This duoconical

shape, however, is principally academic at this time, and does not appear to

be used in practice.

Figure 2-100 and 2-101 show PZ of two sleeve (monopole antennas, [51

Both antennas have an overall height of 30 inches corresponding to the center

conductor. The sleeves are 4 inches in diameter. The sleeve length is 6"

for Figure 2-100 and 24" for Figure 2-101. In both cases it appears the first

resonance occurs at- 2fI as predicted for a monopole. The length of the

sleeve apparently affects the relative amplitudes of the resonant peaks and

the depth of the first null.

Test antenna measured by ARC.
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Figure 2-102 illustrates F for a commercially manufactured sleeve
Z

monopole. The overall height is 28 inches above a counter-poise. The height

of the sleeve is 15 inches and is 3 inches in diameter. The curve shows a

first resonant frequency at about 130 MHz. Higher order resonances, however,

appear to occur at every odd multiple of 100 MHz all the way to 2100 MHz (f l~

Thus, the higher order resonances are periodic based on a first resonant f re-

quency of 100 MHz. The reason for the discrepancy between the 100 and 130 MHz

resonance is not known. The null depths are erratic, but the maximum loss is

less than 7 dB.

2.4 Power Transfer Characteristics of a Dipole

With a Matching Network

When a dipole or monople operates at its natural resonant frequency,

the terminal impedance is sufficiently close to the characteristic impedance

of standard coaxial cables to permit the antenna to be connected directly to a

cable with little loss due to reflected power. In many cases, however, a

resonant type of antenna is required to operate at a frequency above or below

its natural resonant frequency. As a result, the impedance of the antenna

element is reactive and no longer matches the characteristic impedance of the

transmission line. In order to minimize power transmission loss due to re-

flection at an impedance mismatch, a matching network is inserted into the

line as close as possible to the antenna. A properly matched antenna prevents

the reflection of power in.either direction. For a transmitter, the network

prevents power reflections back into the transmitter. For a receiving antenna,

the matching network prevents power reflections back into space.

The function of a matching network may be viewed in different

wa~zs. The network is normally considered to be an impedance transformer that

transforms the an,..cnna or load impedance into the characteristic impedance of

the connecting transmission line. It may also be viewed as a network which

causes the antenna to appear to be resonant at the operating frequency and,

thus, provide a non-reactive impedance which is adjusted to match the character-

istic impedance of the transmission line. Consequentyly, matching networksI

are usually highly reactive and generally consist of low-lass inductances

and/or capacitances. Since a matching network is resonant with its antenna

at the matching frequency, currents and voltages within the network and
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between the network cannot be avoided and are usualiy minimized with special

construction techniques. Associated with a matched antenna is a Q of the

circuit at the resonant or matched frequency. Thus, in general, the bandwidth

and efficiency of a matched antenna is limited primarily by the properties

of the matching network.

Because matching networks generally have a very significant effect

on the frequency characteristics of the overall antenna impedance, any matching

circuitry associated with an antenna should be. considered as an integral part

of the antenna. As with most commercially manufactured antennas that contain a

matching circuit, the circuit is sealed within the antenna structure so that it

is not possible to physically separate the network from the radiating elements

of the antenna. The design and construction of such antennas is usually pro-

prietary, and information relating to the individual components with the

antenna structure is generally not available. The published specifications

for the antenns which meet certain standard requirements are based on measure-

ments of the terminal impedance of the total antenna/matching network/ balun

circuit. Consequently, the purpose of the present analysis is to determine

characteristics of the transmission loss which appear to be common to a wide

variety of matching conditions for purposes of modeling.

A very common design restraint for antennas is that they must be

physically small. This is particularly true with aircraft antennas where the

required dimensions of the antennas are often considerably less than one-half

or one-fourth of a wavelength. This results in antenna elements which are

electrically short and not capable of resonating at the required operating

frequencies. Various techniques to lengthen the antenna electrically are

usually applied, such as capacitive end loading or dielectric loading. Where

these effects are insufficient to achieve natural resonance, the resulting

impedance must be matched with appropriate circuitry to the standard character-

istic impedance - e.g., 50 ohms - of transmission lines.

Consequently, matched antennas predominantly operate at fre-

quencies below the natural resonant frequency of the antenna elements. As a

result, the impedance of the antenna elements generally consists of a relatively

small resistance and a large capacitive reactance. To match this impedance

* condition the matching network must contain at least one inductive reactance.
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At radio frequencies reactive elements can be achieved either with lumped

elements or with transmission line techniques (e.g., shorted stub, waveguide

tuning techniques). In this report the frequency properties of dipole antennas

matched by both methods are considered. Curves of the impedance matching
factor for a wide range of frequencies outside the design range of the matched
antenna are presented. The design frequency range of a matched antenna is the

range over which the antenna (with its matching network) is designed to be

reasonably werl matched to the transmission line. All frequencies outside

this range are considered to be out-of-band. Note that, in general, for a

matched antenna, the natural resonant frequency of the antenna element is

out-of-band.

2.5 Impedance Hatching Characteristics of Antennas

Hatched with Lumped Elements

The simplest form of a matching network is an L-pad consisting of

two reactive elements: one series and one shunt. Table 2-4 lists the six

possible kinds of L-pads shown matching a capacitive load impedance Za =

Ra+j X . The input impedance Zin of the entire circuit is shown along with

expressions giving values of the matching elements to provide Z in - R° at a

resonant frequency corresponding to specified values of R and Z of resonance.

The transmission loss curves of dipole antennas for various matching

conditions have been calculated. Schelkunoff's equations for the cylindrical

dipole were used to provide te dipole impedance, andmatching was modeled

using Types I and II networks (shown in Table 2-4). A thin dipole (h/a=1 6) and

a fat dipole (h/as20) were studied for the matched frequencies corresponding

to h/-0.1, 0.15, and 0.2, where the dipole has a natural resonance near

h/X-.25. The thin dipole was also studied at a matched length of h/X-.23,

which is slightly below the natural resonance of h/X-0.246. The results are

presented in Figures 2-103 through 2-116.

The numerical values used for each of the matching networks are

listed in Table 2-5.

The lumped constants of the matching circuits were assumed to be

ideal for this study.
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Table 2-4 Two-Element Matching Networks For Antennas
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Figure 2-103 Impedance Matching Factor of Cylindrical Dipole
(h/a 106) Matched with LC Network for Resonance at .1 h/X
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Figure 2-105 Impedance Matching Factor of Cylindrical Dipole
(h/a = 106) Matched with LC Network for Resonance at .15 h/A
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Figure 2-06 Impedance atching Factor of Cylindrical 
Dpole

(h/a = 0) atched with LL Network for Resonance at .15 h/A
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Figure 2-107 Impedance Matching Factor of Cylindrical Dipole
(ha -106) Matched with LC Network for Resonance at .20 h/X

00h/AZ

Figure 2-108 Impedance Matching Factor of Cylindrical Dipole
(ha -106) Matched with LL Network f or Resonance at .2 h/X
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Figure 2-109 Impedance Matching Factor of Cylindrical Dipole
(h/a = 106) Matched with LC Network for Resonance at .23 h/A
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FFFigure 2-110 Impedance Matching Factor of Cylindrical Dipole
(ha - 106) Matched with LL Network f or Resonance at .23 h/X
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Figure 2-111 Impedance Hatching Factor of Cylindrical Dipole
(h/a 20)"Matched with LL Network for Resonance at .1 h/A
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Figure 2-112 Impedance Hatching Factor of Cylindrical Dipole
(h/a =20) Hatched with LL Network for Resonance at .1 h/A
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Figure 2-113 Impedance Matching Factor of Cylindrical Dipole
Chia , .15) Matched with LC Network for Resonance at .15 h/A

0-h 2 -

Figure 2-114 Impedance Matching Factor of Cylindrical Dipole
(ha -. 20) Matched with LL Network for Resonance at .15 h/X
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Figure 2-115 Impedance Matching Factor of Cylindrical Dipole
(h/a -20) Hatched with LC Network for Resonance at .2h/

h/A 2

II

Figure 2-116 Impedance Matching Factor of Cylindrical Dipole

(h/a - 20) Matched with LL Network for Resonance at .2 h/A

2-87

*I---*-- 
"** - --'-w--fl 

lW ,"f



Table 2-5

Reactance Values of Matching Network Elements at Resonance

Dipole: Cylindrical (h/a - 106)

Resonant Dipole Z Type I Type II

Length At Resonance XL XC !1 X2

.10 7.68 - j2113 1518 5391 3475 5391

.15 19.0 -j1104 683 1791 2878 1791 !

.20 38.9 - j474 252 537 4018 537

.23 57.5 - j159 76.7 148 2197 148

Dipole: Cylindrical (h/a - 20)

Resonant Dipole Z Type I Type II
Length At Resonance XL XC _1 X2

.10 5.74 - j344 257 1015 520 1015

.15 15.34- j169 109 305 379 305

.20 35.0 - j54.93 44 64 336 65.6
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The most notable finding seen with these curves is the fact that

higher order resonances can still occur with a matched antenna. In particular,
for Type I matching all higher order resonances of the dipole occur as though

the matching network did not exist. The resonant frequencies are sh ifted

slightly to higher frequencies but the peak values are essentially unaffected.

When the matched resonant frequency is close to the first natural resonant

frequency of the dipole the two resonant peaks converge into one, as seen in

Figures 2-109, 2-110, 2-115 and 2-116. The resonant peaks which occur v.ith Type II

matching, however, attenuate with increasing frequency. The attenuation rate

is higher for the dipoles that are matched at electrically shorter lengths.

It is obvious that Types I and I-V tend to become transparent to the circuit

at higher frequencies, whereas the remaining types tend to block the antenna

or shunt it out at increasing frequencies. In general, the type of matching

circuit used in any given antenna is unknown.

These figures also indicate that the matched resonance selectivity

curve is generally of relatively high Q. Figure 2-117 shows an expanded scale

of the resonant peak given in Figure 2-105. The calculated Q of this peak is
61.6. Values of the modified resonance function applied to this curve are

shown with the X's.

2.6 Transmission Characteristics of Antennas Hatched

With Single-Stub Transmission Line Elements

Single-stub matching involves locating a point on the transmission

line at a distance Ll from the load impedance where the real part of the

admittance looking toward the load is G01l/R , where R is the characteristic i
impedance of the line. At this point a shorted transmission line stub of

length L2 is connected in parallel to cancel the susceptance in the line.

Beyond this point, then, the impedance looking toward the load is everywhere R

Thus, the load impedance is matched and no incident power is reflected. For0

this condition all incident power is absorbed by the load, except for ohmic

losses in the L and L seget ofteIasms ie
1 2 emnso h rnmso ie

The physical arrangement of a single-stub match is illustrated in

Figure 2-118. Let the reflection coefficient of the load impedance by

r rl
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Figure 2-118 Diagram of Stsle-stub Match for an Antenna
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as seen at the load. The admittance Ys as seen looking toward the load at

distance L from the load is given by 16, page 312]

1-Irl 10-20LI 27rYs G 01+1r L (8= 10)

= G l-1rj2-j2Irjsin(O-2OL)G°0 1+r12 +21rlcos(O-20Ll)

= JB.
The admittance looking into a shorted stub of length L2 is

YSC = J  
Go ctOL 2"

The length L of the series section which gives G - G is

L1 =_1 "+ Cos--1 I r

The length L2 of the shorted stub which provides

Y SC f -B

is given by
L2 1 -1 /1-lrl'

7= tan ,. )"

The frequency response of an antenna which is stub matched is expected to be

different from that when matched with lumped constants, due to the manner in

which the electrical effects of stub elements change with frequency. Note that

transmission line elements possess the property of providing the same impedance

effects when their lengths are increased by any integral multiple of one-half

wavelength.

In order to study the frequency behavior of stub-tuned antennas,

the impedance matching factor has been calculated for various matched conditions

of electrically short cylindrical dipoles. Similar to the previous analysis

for lumped constant matching, stub matching was examined for conditions of a

thin dipole (h/a-10 
5) and fat dipole (h/a20) at natural resonant lengths of

hA.l0, .15 and .20. The impedances of the dipoles at these electrical lengths

have been listed in Table 2-5. The electrical length required for the stub

elements to match these impedances are given in Table 2-6.
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Table 2-6

Electrical Length of Transmission Line

Stub Elements Required for Matching Cylindrical

Dipole Antennas to SO ohms

DDpole Length LI/A L2/X

Dipole Lenth/Radius at Resonance I 2/X

106  h/ - .10 .24476 .0014757

106 .1s .23836 .0044406

106 .20 .21877 .0147498

20 .10 .21928 .0077715

20 .15 .18006 .02S245

20 .20 .072001 .100827

The resulting curves are presented in Figures 2-119 through 2-131.

Many of these figures illustrate the effect of using transmission line elements

increased by A/2 or 1. As can be seen, a stub match has a dominating effect on

the antenna impedance over a wide range of frequencies. The design resonance

peak tends to be extremely high Q. For example, the Q of the resonant peak in

Figure 2-121 is 521which is considerably higher than the Q reported earlier

(61.6) resulting from a lumped constant match of the same antenna. In general,

a stub match produces several random components in the fine-grain structure of

these curves. The interaction of the stub matching circuit continues to create

resonances at higher frequencies. Based on the assumption that specifications

for only the first resonant peak will be known for any given antenna, it will

not be possible to model reliably the structural details as shown.

As a matter of interest, the matched resonance peak of Figure 2-.27

is shown on an expanded scale in Figure 2-132. The Q calculated for this peak

is 171.3. Values of the modified resonance function for the Q value are shown

by the X's.
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Figure 2-119 Impedance Matching Factor of Cylindrical (h/a = lOs)

Stub-Matched for Resonance at .1 h/X
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(ha - 106) Stub -Matched for Resonance at .1 h/X with Stub
Length Increased A/2
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Figure 2-121 Impedance Hatching Factor of Cylindrical Dipole
Cha 106O) Stub-Matched for Resonance at .15 b/X

-10

Figure 2-122 Impedance Matching Factor of Cylindrical Dipole
(h/a - 10)Stub-Matched for Resonance at .2 h/A
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Figure 2-124 Impedance Matching Factor of Cylindrical Dipole
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Figure 2-125 Impedance Matching Factor of Cylindrical Dipole
(h/a = 106) Stub-Matched for Resonance at .2 h/A with Stub Length
Increased IX
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Figure 2-126 Impedance Matching Factor of Cylindrical Dipole
(h/a = 106) Stub-Matched for Resonance at .2 h/X with Both
Stub and Series Section Increased IX
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Figure 2-127 Impedance Matching Factor of Cylindrical Dipole
(h/a = 20) Stub-Matched for Resonance at .1 h/X
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Figure 2-128 Impedance Matching Factor of Cylindrical Dipole
(h/a = 20) Stub-Matched for Resonance at .15 h/X
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Figure2-129 Impedance Matching Factor of Cylindrical Dipole
(h/a 20) Stub-Matched for Resonance at .2 h/A
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Figure 2-130 Impedance Matching Factor of Cylindrical Dipole
(h/a - 20) Stub-Matched for Resonance at .2 h/X with Series
Section Increased 1 2
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The first resonant peak of Figure 2-122 is shown on an expanded

scale in Figure 2-133 illustrating that the matching resonance at .2 h/X displaces

the natural dipole resonance (at .25 h/X) slightly to the right.

The out-of-band responses of several types of aircraft antennas

have been published [7,8]. Specific antenna structures were analyzed, and

their electrical properties were modeled to permit theoretical calculations

of the antenna response at frequencies outside the design band. The modeling

of each antenna has been very thorough to account for the electrical properties

of the antenna structure and any feed circuitry of the antenna. As shown, the

equivalent circuits contain lumped elements and/or transmission line elements.

These data which in part have been corroborated with measurements, provide

some additional insight into the complicated nature of some real antennas that

will undoubtedly require modeling in IEMCAP. All samples shown were analyzed

as receiving antennas, thus, the resulting overall antenna effectiveness is

represented by effective height, open-circuit voltage at the antenna terminals,

or induced current.

Figure 2-134 illustrates the effective height of a commnm UHF blade

antenna for aircraft. The design band is 225-400 MHz. The different sections

of the transmission lines and the end capacitances are for tuning purposes.

The antenna is essentially a monopole represented by admittance Y a, that is

loaded capaoitively by a conducting shroud which is dielectrically insulated

from the active element. Unfortunately, the analysis does not extend above

400 MHz. The effective height of an antenna corresponds to the ability to

receive a voltage from an incident field strength and compares~ to F Z for a

transmitting antenna.

Figure 2-135 shows the open-circuit voltage of a marker beacon

antenna which mounts flush on the underside of an aircraft. The antenna

consists of a cavity shaped like a bowl with a capacitively loaded pickup

inside. As can be seen, the antenna has a distinct resonance at 75 MHz. The

input impedance curve for this antenna (not shown) does not indicate any other

resonances below 250 MHz.
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Figure 2-134 Frequency Response Behavior of a Common

UHF Aircraft Blade Antenna
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Figure 2-135 Frequency Response Behavior of a Marker Beacon Antenna
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Figure 2-136 shows the open-circuit voltage of an aircraft localizer

antenna which has an operating range of 108-112 MHz. This antenna contains two *
tuned loops, a coaxial cable balun, and a 100-ohm resistor with wires wrapped

around the resistor.

Figure 2-137 illustrates the effective heighlt of an HF fixed-wire

antenna on an aircraft. The antenna is driven at the vertical stabilizer.

The curve shows a resonance at 2.5-2.8 MHz, and a second resonance at 8.2 Mz

(=Ux2.73). It is presumed that this antenna is tunable at any one frequency,

as shown in Figure 2-137.

Figure 2-138 gives the induced current-of a long dual-wire antenna

trailing behind an aircraft. The antenna operates in the frequency range

17-60 kHz and is tuned by varying the wire lengths. At 17 kliz the wire length

is about 5 miles. The lower, longer wire is grounded to the aircraft and

serves as a counterpoise for the shorter upper wire which is driven against

the aircraft at an "antenna gap." The curves shown in Figure 2-138 are for an

antenna with wire lengths of 1.2 km and 7.2 km. The angle between the wires

in the vertical plane is 60. The first resonant peak is the natural first

resonance of the long wire. Higher order resonances 18 kllz apart can be

attributed to the combined length of the two wires. The peaks at 55 kHz,

180 kHz, 305 kliz and 430 kHz are due to resonances of the shorter wire.

2.7 Modeling the Impedance Matching Factor of an Antenna

Having a Matching Network

In order to model an antenna having a matching network with

sufficient accuracy to predict its unique characteristics of reflection losses

at out-of-band frequencies, it is necessary to obtain detailed information

concerning the physical and electrical structure of all components of the

antenna. Antenna manufacturers, however, generally provide overall per-

formance data applicable only to the design frequency range. Knowledge of

the design and construction of the matching circuit, the balun, and of the

antenna proper are seldom available, Consequently, it is assumed for the

modeling that the only information available will be the specified frequency

range of operation and an associated directive gain pattern. Where this
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operating range is a resonant peak of a matched antenna, it is not possible to

extrapolate further details of antenna performance without knowledge of the

* natural resonances of the antenna proper and of the type of matching circuit.

There generally are too many unknown details to permit modeling the antenna

with the desired degree of accuracy. Thus, it is necessary to look for

characteristics which appear to be common to nearly all of the curves of

impedance matching factor shown for matched antennas.

A noticeable feature seen with these cur.'es is the degree to which

the first resonant peak is isolated from other resonances. It appears that

the specified ope-ating bandwidth of a resonant antenna is generally the first

resonance; that is, a significant resonant peak will rarely occur at a fre-

quency below the specified operating design band of an antenna. Above the

design band centered at f r', there seldom appears to be another resonant peak

below 2f . This condition seems. i-r, hold true when the matched resonance at fr r
is less than .8f1, where f Iis the natural resonant frequency of the antenna

proper. When f -f there is only one peak. However, for f in the approximaterI r
range there is only one peak. However, for fr in the approxima-e range .8f1

to .9f1 , two resonant peaks appear, with the design resonance having greater

amplitude. It is desirable to model the selectivity on both side of the specified
resonance curve, since use is often made of this selectivity to isolate co-

located systems operating on adjacent channels. It appears admissible to model

the lower side a'ccording to the modified universal resonance function down to

the limiting frequency of I Hz. For the upper side, it is proposed not to

* attempt to model the selectivity skirt of a second resonance. The upper skirt

of the first resonance can be modeled down to some lower limiting level of F Z'
* At some frequency, such as 1. 8f1 , the modeled level could jump to a high

constant level, e.g., 0 dB. The level would remain at this value for all

higher fr'oquencies, except for a gradual decay rate to be considered in a

later section.

It may be reasonable to model the upper skirt of the first

resonance as follows. Model according to the modified universal resonance

curve from f1I to a frequency f 2 at which either of the following occurs first:

a. f 2'1.8f I

b. F =-20.0 dB.
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This upper skirt would not be modeled if the Q of the operating range given by

fu-fz

is less than 3. The model in this case would provide F =0 dB for f > fl"
z-

Three conditions of this possible model are illustrated in Figure

2-139. The modified universal resonance function is plotted fdr several values

of Q in Figure 2-140 to indicate the model shapes for a given Q.

2.8 Impedance matching factor of Slot Antennas

The electromagnetic properties of a slot in an infinite plane

conductor are complementary to those of a thin, flat dipole of exactly the

same dimensions as the slot. [9, page 196) The radiation patterns have

identical shapes except that the electric and magnetic vectors are interchanged.

The input impedance of a slot is related to that of the corresponding dipole as
2

z=
s 4Z d

where q = 120n ohms, impedance of free space.

The impedance matching factor of a slot antenna was computed using

the above *xpression and Schelkunoff's impedance equations for a dipole. If

the input impedance of the complementary dipole is

Zd = Rd + j Xd

then the input impedance of the slot is

Zs 4 - " _ ) . i
4 d2 R2+d

The impedance matching factor was determined by using Zs to calculate the

reflection coefficient based on a characteristic impedance of 330 ohms for

the transmission line feeding the slot. [9, page 198]

The resulting curves of Fz, shown in Figures 2-141 and 2-142, are

nearly identical with those for the complementary dipoles (Figures 2-13 and 2-19).

The resonant frequencies occur at the same locations, but the null depths for
the slot are slightly less than those of the dipole. Consequently, F Z of a

slot antenna without feed circuitry may be obtained using the model of a

resonant dipole of equivalent dimensions.
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Figure 2-141 Impedance Matching Factor of a Thin Slot Antenna
(h/a =10

6)'Based on Z 0 530 ohms)
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2.9 Impedance Matching Factor of Folded Dipoles

The impedance matching factor of a basic folded dipole was calcu-

lated at out-of-band frequencies. The dipole was assumed to have equal radii

a for both arms, and an arm separation D to radius ratio of 10 was assumed.

Based on the existence of symmetrical and anti-symmetrical currents

on the dipole arms [11, page 3-13], the input impedance of the folded dipole is

4Z Z
z as
Z +2Z

a s

where Z = input impedance of standard dipole

Z = input impedance of a shorted transmission linea

= j Z tan kh,o

Z = characteristic impedance of balanced transmission line
0 consisting of dipole arms = 276 log (D/a) ohms

= 276 ohms.

Schelkunoff's equations were used to provide Z =R+JX. The expression for Zf is
5

4R(Z tan kh)
2  8(R 2+X 2)Z tan kh +4X(Z tan kh)

2

4R 2+(2X+Z tan kh)
2  4R 2+(2X+Z tan kh)

2

0 0

The input impedance of the folded dipole was then used to calculate the

reflection coefficient based on a characteristic impedance of 300 ohms for

the feed transmission line.

Curves of F were obtained for thin and fat cylindrical dipoles.

The results are presented in Figures 2-143 and 2-144. Since these curves indicate

periodic resonances at the same electrical lengths as the corresponding standard

dipoles, the modeling of these curves may be done using the same principles

as used for modeling standard resonant dipoles. It may not be practical to

attempt modeling the deep nulls due to characteristic anti-resonances of

folded dipoles. These nulls appear to be very sharp for calculations based on

a fat cylindrical dipole, as seen in Figure 2-144. This example more closely

resembles actual shapes of folded dipoles than does the extremely thin dipole

case of Figure 2-143. The exact location of these nulls in frequency may be

difficult to determine based on the data specified only for the first resonant

peak. Even if both the first and second resonant peaks were specified, the

null is not located exactly midway. For the exampleshown in Figure 2-144, the

first and second peaks occur at h/X-.23 and .72, respectively, while the null

occurs in h/X-.50.
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Figure 2-143 Impedance Matching Factor of a Folded Dipole with
Thin Elements (h/a =106 )(Based on Z = 300 ohms)

o

C.~0 h/X s

Figure 2-144 Impedance Matching Factor of a Folded Dipole with

Fat Elements (h/a 20) (Based on Z 0 300 ohms)
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As a matter of interest, the first resonant peak and null of the

example shown in Figure 2-144 are presented on an expanded scale in 7igure 2-145.

The relatively wide peak of the first resonance is indicative of the broadband

nature of folded dipoles. One example of a resonant peak of a folded dipole

based on measurements, given on page 341 of reference [101, is presented in

Figure 2-146. The shape of this curve does not agree well with the theoretical

shape of Figure 2-145.

Values of F z determined from input impedance measurements of a

folded dipole constructed by ARC is shown in Figure 2-146. The dipole elenents

were made from 300-ohm twin lead taped to a lucite plastic board. A 4:1 trans-

former balun was attached at the feed point to permit the use of a 50-ohm BNC

input connector. As can be seen, the resonances are not very regular, and the

nulls are not well defined. The deepest null is -7.4 dB. The fatness ratio

for each element of this dipole was about h/a z600. For this antenna, f I =10

Nilz.

If it is assumed that folded dipoles as found in practice always

conform to analyses with a fat cylindrical dipole, the curve of Figure 2-144

represents the frequency performance to be modeled. Since it will generally

not be possible to predict the nulls accurately, and since the resonant peaks

are considerably broad, it is recommended that F z be modeled with a constant

o dB level at all frequencies above the first resonance. Below resonance, the

modified universal resonance curve can be applied based on a specified Q.

2.10 Impedance Matching Factor of Loop Antennas

Loop antennas comprise a large group of antennas which have unique

characteristics and appear with a wide variety of designs. Loops may be

electrically small or large, tuned or untuned, shielded or unshielded, and have

single or multiple turns of wire. However, let us consider the types of loops

most commonly used in practice.

The loop antenna perhaps finds widest application as a re~ceiver of

low frequency signals - that is, LF and VLF. At these frequencies, with

extremely long wavelengths, the loops are electrically small, and are not self-

resonant. A tuning capacitor placed across the terminals of the loop permits
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Figure 2-147 Impedance Matching Factor of a Folded Dipole
Constructed of 300-ohm Twin-lead (Based on measured data)
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the loop inductance to be resonated against the capacitor to fonm a resonant

tank circuit. The voltage across the capacitor is then monitored by a high

impedance input to a receiver. An electrically snail loop is generally very

inefficient and is rarely used to transmit low frequency signals. A loop with

an input tuning capacitor will have a distinct first resonance with good

selectivity above and below this point. At sufficiently high frequencies the

loop becones electrically large where the physical length of the loop conductor

is on the order of one-half wavelength or more. In this mode the loop behaves

quite differently than it does when electrically small, and an endless

sequence of high order resonances can occur as the frequency increases. These

conditions will occur f or the loop regardless of the number of turns or if it is

shielded or not. If the loop has only a single turn its length is iT x diameter.

If the loop has N turns, its length is N x it x diameter. This is the length

that must be considered in determining its size relative to a wavelength. If

N is unknown, the size of a loop cannot be determined from its diameter alone.

If it is assumed that construction details of a loop are not available, it is

suggested that modeling F Z of an electrically small loop be done with the same

model used for a matched dipole.

For the case of an electrically large loop which is designed to

operate at a natural resonance without tuning elements, the Fz may be described

using the model for a resonant dipole without matching. It is expected that

(1,page 6-3], can be placed within this group. Alford loops, however,

cnanloading capacitances at the corners of the loop and, therefore, may

ntresonate at the higher modes as expected.

2.11 Transmission Loss of Yagi-Uda Beam Antennas

The Yagi-Uda beam antenna is a parasitic endf ire array of linear

elements approximately one-half wavelength long, [9, page 231] It consists of

one driven element, which is often a driven element, and a series of directors

which are slightly shorter than the driven element. This kind of antenna is not

frequency independent, for bandwidths of 2 percent (Q 5O) are typical. Conse-

quently, the impedance matching factor f or this antenma may be modeled as that

of a resonant dipole without matching. It is expected that higher order

resonances will occur at integral multiples of one-half wavelength based on the

behavior of the driven element. If the driven element is a folded dipole, the

absence of data describing the out-of-band performance of a Yagi-Uda array, the

most suitable model for Fz is difficult to determine.
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2.12 Impedance matching Factor of Frequency-Independent Antennas

The class of frequency-independent antennas is considered here to

consist of those antennas designed to have an operational frequency range of

3:1 or greater without the need for tuning. Examples of this class are log-

periodic and log-spiral antennas. The useful operating range is so broadband

that the concept of Q as applied to the power transmission loss curve is not

valid. The range must be defined by lower and upper frequencies. The VSWR

is considered to be acceptable over this entire range.

The impedance matching factor measured by ARC for a commercial

log-periodic antenna is shown in Figure 2-148. The operating range of this

antenna is 250-1100 MHz with a maximum VSWR of 2:1. As seen in the figure,

however, the impedance is reasonably good up to at least 4 GHz with the maximum

loss of 5 dB occurring near 1.5 GHz. Below the lower limit F Ztends to increase

rapidly.

An example of a logarithmic-spiral antenna is shown in Figure 2-149,

also measured by ARC. The specified operating range of this antenna is 200-

1000 M~z; however, F Zis seen to remain less than 2 dB up to at least 4 GHz.

Below 200 MHz F Ztends to increase rapidly.

Based on these limited amount of data, it is apparent that

frequency-independent antennas may be modeled using the modified universal

resonance function (for some value of Q) to simulate the lower cutoff, and to

hold the loss at 0 dB for all frequencies above the lower frequency, except for

a general decay due to ohmic lasss. The selection of Q is somewhat arbitrary

and is not necessarily determined from the operating frequencies of the antenna.

The shapes of the curves in Figures 2-148 and 2-149 below the lower frequencies

compared with the family of Q-curves in Figure 2-140 indicate that Q=l provides

a reasonable fit. The curve for this Q falls to -10 dB at one-half the peak

frequency.

2.13 Impedance Matching Factor of Helical Antennas

A heli cal antenna is constructed in the form of a monopole over a

ground plane in which the monopole element is shaped as a helix. [9, page 187]

Thus, it has a single radiating element which is fed at the base against the

ground plane. The electrical properties of the helix are a function of its
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Geometry, i.e.,diameter and turn spacing. At low frequencies where the dimen-

sions are very small compared with the wavelength, the helix behaves as a mono-

pole with a small loop coaxial with the helix, For this mode the maximum

radiation is in a plane perpendicular to the helix axis, and the radiation

is minimum in the direction of the axis. When the diameter and spacing become

appreciable fractions of a wavelength, another radiation mode occurs which

concentrates the radiation in the axial direction. In practically all cases

the helical antenna is designed to operate in this axial mode.

Helical antennas are not frequency-independent but do tend to be

relatively broadband. Commercial models can have bandwidths that are 20% to

50% or more of the center frequency 112].

If the circumference of a helix of N turns is C, then the length L

of the helix conductor is approximately NC. At a low frequency for which

NC XI4, it s expected that the helix should behave as a monopole and exhibit

resonance. This resonance is relatively broadband due to the diameter of the

helix. There is expected to be selectivity on each side of this "normal" mode

of resonance. When the frequency increases to where C*7X the axial mode

occurs, and the antenna becomes very efficient over a broad range of frequencies.

(13, Ch. 7] Thus, if the axial mode begins at a frequency fl, then the normal

mode resonance should occur at approximately fj2.8N. For example, if a 6-turn

helix has a lower frequency limit (axial mode) of 108 MHz, self-resonance is

expected at about 6.4 MHz. Higher order resonances should occur at approxi-

mately 6.4 + n 12.8 MHz, n=l, 2, 3, etc. until the axial mode occurs. Thus,

at frequencies below where the axial mode occurs, the terminal impedance of a

helical antenna is highly sensitive to changes in frequency. In the axial

mode, where 3/4X<C<4/3X, the terminal impedance is nearly constant with

frequency. The dimensions of the helix are not critical in the axial mode.

For frequencies above the design axial mode, it appears that the terminal

impedance remains relatively stable, but the radiation pattern deteriorates

from the desired beam shape and becomes multilobes in many directions.

Consequency, in the absence of measurement data for helical antennas over a

wide frequency range, a suggested model for the impedance matching factor is

0 dB level at all frequencies above the first natural resonance. The fall-off

below this frequency can be modeled with the modified resonance function using

an arbitrary value of Q-1.
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2.14 Impedance Matching Factor of Traveling Wave Antennas

Traveling wave antennas are non-resonant radiating systems that

are normally large and constructed over the long wire antenna and the rhombic.

These antennas can be designed to operate at VHF and UHF. 1 11, CH. 4] Travel-

ing wave antennas are essentially transmission lines terminated in their

characteristics impedance. Consequently, no energy is reflected and standing

waves are not present on the conductors. It should be noted that one form

of long wire antenna is without termination, where advantage is taken of the

radiation from the resulting standing waves. Modeling the impedance matching

factor for this standing wave t-,pe of wire antenna could use the model developed

for a resonant dipole. However, an additional loss term at the low frequencies

due to the height above ground should be added. This loss term is described

below.

Traveling wave antennas are normally designed to operate within a

frequency range where their electrical length is from one to ten or twelve

wavelengths. Consequently, they are relatively broadband. Bandwidth limi-

tations may be due more to degradation of the feed (matching and balun) network

and the terminating resistor than of the radiating elements themselves. If the

termination can be maintained at all frequencies there should be no lower fre-

quency limits while an upper limit should arise eventually where other trains-

nision modes begin to exist on the radiating wires. The termimating resistance

for a rhombic must normally be non-inductive and have a resistance on the order

of 700 to 800 ohms. The power to be dissipated in the terminal resistor varies

from about 50 percent of the input power when the sides are of the order of two

wavelengths to 1. 5 percent for rhombies f ive wavelengths or more per side. Feed

circuitry for rhombies is normally designed for a unique value of 600 ohms for

the majority of applications.

Transmissionloss terms arising from deterioration of the feed and

termination elements at higher frequencies are considered in Section 2.0.

At the low frequencies below the design band, the feed circuit may

deteriorate, but this condition is not assumed here. Instead, there appears to

be a height factor which will tend to reduce radiation as the frequency de-

creases toward zero due to the cancelling effect of the ground reflection or

image. This loss term is considered in Section 2.16.
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As a result of the many uncertainties associated with this type of

antenna at out-of-band frequencies, it is reasonable to accept a constant value

of F'= dB at all frequencies for the model. As already mentioned, low and

high frequency adjustments to account for degradation will be made in later

sections.

2-15 Impedance Matching Factor of a Horn Antenna

Horn antennas generally consist of a rectangular or circular

waveguide section having a flared opening at one end. The other end of the

waveguide is either flanged for connection to a waveguide or is shorted to

accommodate a probe for coupling with a coaxial line. It is principally the

interaction between the coupling probe and the EM field inside the waveguide

throat of the latter type of horn that determines the Chdracteristics of

input impedance with frequency.

Horns normally have a design operating range of about one octave.

The upper and lower limits are distinctly determined by the dimensions of the

waveguide. The lower limit is defined as the frequency for which the longer

dimension of a rectangular waveguide is one-half wavelength. This is an

absolute limit called the cutoff frequency. Theoretically, frequencies below

this value will not be propagated in the guide. Within the design band there

is a well defined mode of propagation of the electric and magnetic fields (TE10 ).

The next higher order mode can occur when the larger guide dimension equals one

wavelength. It is undesirable to operate a guide at frequencies which permit

higher order modes, since they will not be properly coupled to the load. As

a result, reflections and standing waves may be set up causing losses. Conse-

quently, the design band of a horn ranges from the cutoff frequency to twice

this frequency. [9, page 95]

Figure 2-150 shows the impedance matchine factor meaqtired for a

commercial standard horn designed to operate from 1 to 2 GHz. As can be seen,

the factor does not fall abruptly at I GHz, although, theoretically, propagation

in the guide can't exist below 1 GHz. However, it is presumed the user will

supply the frequency range below cutoff. Based on the curve shown, the

simplest model is a straight line from (f/f c TLOSS)=(.8,O.0) to (.6,-20.)

which is indicated by a dashed line. Theoretically, however, the attenuation

in a waveguide operating below cutoff is not infinite. The loss (dB) per guide
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length d is given by [14, pare 23-6]

L = 54.4 - )

where X is the wavelength at cutoff. Note that at very low frequencies wheret C

X>>X , limiting loss is independent ol frequency and Is
c

L = 54.4 !cc dB.

Xc

If we consider that the length of waveguide inside the horn is approximately

d/Xc=.5, then the limiting loss is L=27.2 dB. Consequently, a limit of -20.0

is a reasonably safe level for modeling FZ from f=O to f=.6f , as shown in

Figure 2-150,

Above the design band there are too many uncertainties to allow

prediction of the terminal impedance. It is expected that Fz will vary con-

siderably but may return to 0 dB over limited ranges of frequencies. There-

fore, the model should provide a constant level at 0 dB for all frequencies

above cutoff.

The input impedance characteristics of a horn antenna also apply

to antennas which use the horn as a primary feed, such as radar antennas.

The terminal characteristics are determined primarily by the nature of the

feed point. However, radar antenna systems usually use waveg4.de to transfer

power between the transmitter/receiver and the antenna. A large problem seen

with out-of-band performance oi a rotatable radar antenna is the existence

of higher order modes in the guide. These modes are not generally predictable

since they depend on dimensions of the waveguide sections, locations of dis-

continuities and fittings in the line (e.g., elbows, tees, reducers), and the

angular position of the rotary joint.
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2.16 Modeling Directive bain Patterns ot Antennas

Directive gain is the second term of the overall gain expression of

an antenna. It accounts for the variations of radiation levels at different

directions from the antenna and is given relative to the level that would be

received if the antenna were an isotropic radiator. Internal power losses of the

antenna .re not considered in the directive gain term. Thus, the modeling of

directive gains is based on lossless antennas.

As is currently done in IEMCAP, the models for low-gain antennas,

such as dipoles, monopoles, loops, etc., are derived from theoretical expressions;

whereas, for high-gain antennas the models are based on user input data such as

mainbeam gain, sidelobe gain, and beamwidths which define the size and shape of

the radiation pattern. In order to extend these models to out-of-band fre-

quencies it will be necessary to rely heavily on available measured data and

applicable theoretical analyses. Unfortunately, the field of antennas is lacking

in both of these types of data at out-of-band frequencies.

2.16.1 Modeling the Directive Gain of Dipole Antennas

The expression for the magnitude of the electric field of a

symmetrical center-fed, thin linear antenna of length L=2h is [13, page 1411.

01 cos(L kL O Cs(kI E r 
sin 

2

where I 0 peak value of sinusoidal current distribution on antenna

r = distance from antenna (assumed to be far field)

k = 2 /X

0 1 elevation angle in spherical coordinates, where

antenna axis is aligned with Z-axis.

The expression in the absolute magnitude brackets describes the

shape of the radiation pattern. Theoretically, this expression is valid over

all frequencies - that is, for O<L/X<- and provides a basis for modeling.

This pattern function should not be used directly for the model for several

reasons. The theoretical pattern for a dipole longer than one wavelength

consists of multiple lobes with deep, sharp nulls between lobes. The angular

positions of the nulls are highly sensitive to frequency and, in practice,
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are easily affected by the local environment. Further, the "fatness" or

diameter of real antennas tends to eliminate the nulls. Consequently, the

null and lobing details defined by the pattern function are generally not

reliable and should be eliminated from the mode]. A practical approach is to

model the envelope of the pattern in a manner which preserves the most signifi-

cant features. First, the nulls in the direction of the antenna axis should be

included in the model. Second, the relatively high gain lobes near the

antenna axis that occur at higher frequencies should also be included in the

model.

A study of the shapes of the patterns over a wide range of fre-

quencies suggests chat they be enveloped with a circular arc tangent to the

antenna axis plus a straight line parallel to the antenna axis. Two examples

of this modeliag are illustrated in Figure 2-151.

The first step is to dete.mine the radius ot the envelope circle.

Let the antenna length be expressed as n half-wavelengths, where

L
n=2.

Then, the angle of maximum radiation, that is, the angle that the strongest lobe

makes with the antenna axis, is given approximately by [9, page 180]

cos® n-I
n

Figure 2-152 illustrates the geometry of a circle with center C on the Y-axis and

tangent to the X-axis. The circle passes through point A where angle AOD=0.

Let B bisect OA=S. By similar triangles angle OCB =0. If it is assumed that

AD=l, then from right triangle ODA

1
sin0 =

S

and from right triangle OBC, where OC=R,

sin0 = S

Combining these, we have

2 sin2 0
I

2
2(1-cos20)
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Substituting cosO from above into this expression and simplifying, we have

2n

This expression gives the approximate radius of a circle tangent to the antenna
axis at the center of the antenna and passing through the peak of the maximum
gain or outer lobes for an antenna of n half-wavelengchs long. It is realized

that this expression gives a slightly smaller radius than required since wewant the circle-to enclose the outer lobes, not pass through the center of them.

The equation of the tangent circle is in Polar form with the origin
at 0 is

G (0) - 2R sinO

2
- n

Next, it is necessary to fit this function to the theoretical pattern shapes
for various values of n In order to determine an appropriate adjustment of n
for the model.

Not only are we interested in the shape of the radiation pattern,we are also interested in the relative magnitude of it over all frequencies.
The radiation pattern, given earlier, by

kL I.,cos(-2 coso)cos(k
F(E)) - C s sinO

does not, by itself, define the relative magnitudes of the patterns for a given
antenna of length L radiating W watts of power at various frequencies. For

example, the magnitude of the pattern envelope broadside to the antenna (OW900)
varies periodically from 1.0 (for odd n) to 2.0 (for even n). The variation of
peak current I with frequency (or electrical length) for a constant level of

0

radiated power W must also be considered since it affects pattern scaling.
If we square the field strength expression, we have

1E1 (6)2 2 IF(O)) 
2

"r. 0
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Figure 2-152 Geometry for Determining Radius of Envelope Circle
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R

Multiply by = 1 where R f radiation resistance of antenna referenced to
R 0

a current maximum (at I)

21E12 = I6o R
r =0 [F(O)]'

60 ( 2 W 2
SR [F()

0

60XW
JEJ = F(O)f

The total power radiated from the antenna may be expressed as [13, page 147;

15, page 41]

W -f 12 R•

0 0

That is, if the antenna were fed at a current peak with input current Io, the

input power would be given by the above expression. This is the same total

power that would be radiated when the antenna is center-fed with an input

current that results in a peak current of I . Consequently, the above field

strength expression provides the absolute power density level in the direction

Oat a distance r for a total radiated power of W watts. For pattern modeling,

variables W and r are assumed to be constant. The desired scaling factor is

lvrR- which varies with the electrical length of the antenna. This radiation
0

resistance R is given by [15, page 40]

o1

R(kL) = y+ ln(kL)-Ci(kL) + -1 sin(kL)[Si(2kL)-2Si(kL)]

+ -1 cos(kL)[y+ln(kL) + Ci(2kL) - 2Ci(kL)]

(Note: A constant factor of 60 for this entire expression is omitted since it

does not affect relative scaling with frequency.)

where = Euler's constant = 0.5772...

Si - sine integral

Ci - cosine integral
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The gain pattern of the half-wave dipole is chosen for an absolute

reference for all the patterns. Consequently, an absolute scaling factor K must

be defined such that the peak value of the pattern of 8=90
" for a half-wave

dipole (kL
=

t) is unity
IEI f
=E

0

For this case, F( ) = 1.0 and 0 = 1.10. Consequently, R 1.10, and the

scaled pattern function is
kL kL

Cos( U-cos) -co
1.10 2 )Cs

F'() = sinO

Sin-e multiple lobing does not occur for antenna lengths shorter

than one wavelength (kL<27),. this region of modeling is treated separately.

The model for all antenna lengths less than one wavelength is a unity circle,

i.e., G(O) = sinO. This is the theoretical pattern of a very short dipole

(kL<< 2V The peak value of the scaled pattern for a one-wavelength dipole is

1.21 which is less than 1.7 dB above that of a half-wave dipole. Thus, a unity

circle model is also applied to a full-wavelength antenna.

For antenna lengths greater than one wavelength multiple lobing

occurs which tends to broaden the pattern along the antenna axis. A study of

pattern behavior with increasing frequency (or kL) reveals a periodic broaden-

ing with each wavelength. The pattern is broadest at odd multiples of one-half

wavelength (n odd). Although the pattern generally becomes broader with

increasing wavelengths, there is a relatively less broadening of the pattern

between the odd multiples where even multiples or an integral number of wave-

lengths occur. In order to envelope the maximum excursions, the model para-

meters were developed from a detailed study of the scaled pattern at odd

multiple half-wavelengths only (n odd).

The scaled pattern was calculated from 0=20 to the first peak for

several odd values of n ranging from 3 to 61 and plotted on rectangular

coordinates shown in Figure 2-153. This plot provides the shapes of the pattern

boundaries which are to be modeled with a circular fit. These curves are

similar to those shown in Figure 4-3 of Jasik [11, page 4-51.
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The model function, given earlier,

n2
G(O) = 2n 0-1lin

was plotted similarly for the values of no=n (results not presented here). A

comparison between the two families of curves indicates good agreement if

Using this definition for n 0, a new family of model curves was calculated and

plotted as shown in Figure 2-154. rhe slopes of the model curves show excellent

agreement with the slopes of the theoretical patterns in Figure 2-153.

Consequently, a new family of curves for these model values was calculated and

plotted, as shown in Figure 2-154. The slopes of the model curves show excellent

agreement with the slopes of the theoretical patterns in Figure 2-153

The relationship between n and n 0is presented in Figure 2-155. The

solid line represents no n, and the dashed line indicates the model relation-

ship. As stated above, the value of n 0exceeds n by .5 for all n>3 (kL >3K).

Since the amplitude of the model function becomes I for n 0 I, the value of an

is shown at a constant level of 1 for all n below 2. This corresponds to a

unity circle for all model patterns in this region. Between n -2 and n = 3

a straight line is drawn for the model function in order to provide model

continuity. The equation of this line is

n = 2.5n-4.

Further examination of the scaled patterns over a wide range of

frequencies indicates that a straight-line envelope across the peaks of theI
lobes provides a reasonable containment of the pattern if located at a distance

of 1 from the antenna axis. The unity circle is, therefore, tangent to the

envelope line, and all larger radius circles are truncated at this line.

This essentially completes the definition of the proposed directive

gain model for linear, center-fed antennas. There are three distinct regions

of antenna electrical length for which the model is defined differently. These
1

models are summarized below. The dipole length is expressed in terms of h-=-L.
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Region I: O< h< .5

G = sinO

If G <.1, then G -- .

Region II : . < - < .75

G = 2-1sine

0
where n = 2.5n-4

A I

If G sinO >1, then G = -sl-#----s lnO 00

If G <.I, then G - .1

h
Region Ill: .75 <

i n2

CG = 0 sinO
- 2n -1

0

where n = n + .5
0

h
=I-) + .5

1
If G sinO >1, then G = ,0

sinO

If G <.I, then G = .1

For all three models a lower limit on the gain is placed arbitrarily

at .1 or -20 dB. This is a practical limit for radiation in the axial direction,

since real antennas with finite thickness seldom exhibit nulls deeper than -20 dB.
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The above directivity gain model has been programmned on a minicomputer

to be drawn superimposed on the theoretical scaled pattern function. A series

of plots illustrating the features of the model for antenna lengths ranging

from L/X=.25 to L/X=10.l is presented in Figures 2-156 and 2-157. The patterns

shown in Figure 2-156 are drawn on a linear polar scale, and those shown in zeigure

2-157 are drawn on a logarithmic polar scale. The straight line seen at the

bottom of each pattern represents the antenna wire. One half of the length of

this line represents a scale of unity gain for the linear plots, and a scale of

20 dB for the logarithmic plots.

As expected, the model shows excellent enveloping of the outer lobes

for odd half-wavelengths (1.5, 2.5, 3.5,...) but tends to appear excessively

large for the integral wavelength cases (2.0, 3.0,....). It is possible to model

these periodic variations; however, several factors should be considered. It is

questionable whether the model should become sufficiently complicated to account

for these second-order variations. The errors shown in the figures may appear

excessive, however, there is evidence indicating that the radiation patterns

of real dipoles having finite thickness exhibit a general lack of deep nulls

and have a finite amount of radiation along the dipole axis. Figure 2-158

* [11, page 3-8] illustrates pattern degradation as the dipole becomes fatter

for various electrical lengths. The top row, for an infinitely thin dipole,

shows the theoretical patterns. The remaining rows illustrate measured

patterns for dipoles having the indicated length/diameter ratios. There is

a striking degree of pattern degradation for the L - .625X and L 1 .125X~

cases. It is interesting to note that in some cases lobes disappear and in

other cases new lobes are formed. Since these kinds of details are extremely

difficult to predict with theory, the most practical solution tay be to provide

an envelope which will contain the majority of patterns for any given "fatness"

ratio. It is felt that the proposed model provides a satisfactory compromise

between minimal error and simplicity in view of the wide range of complex

variations that can occur with actual patterns.

*Note that L in Figure 2-158 is one-half the dipole length.
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2.16.2 General Pattern Model for Medium-Gain

and High Gain Antennas

The directive-gain patterns currently used in IEMCAP for medium-

gain and high-gain antennas are defined by the following user-supplied sub-

parameters entered on the ANT input card:

GmB = maximum gain

eB = 3 dB vertical half-beamwidth

= 3 dB azimuthal half-beamwidth

GmsL = major side-lobe gain

Bl = side-lobe ongle

GBI = back-lobe gain

These quantities define a three-level model with levels G. ,

GmsL and GaI. The user may specify a two-level model with levels GMB and

GBI by setting GmsL 
= 0 and 0sl = 0.

Figure 2-159 illustrates the existing three-level model in IEMCAP

for a typical antenna pattern. A similar model defines the pattern in the

orthogonal plane. The two orthogonal patterns generally differ only by the

mainbeam half-beamwidths 0B and B.

The simplicity of the existing pattern model is desirable with re-

gard to ease of coding (in subroutine GAIN), but the model provides several

undesirable features. As can be seen in Figure 2-159, the model predicts gain

values which may be considerably less than the actual values. Further, the

gain is discontinuous at the angles eB, +B and + Osl because of

rectangular profiles. Finally, while the user can specify separate orthogonal

beamwidths for the main beam, only one side-lobe angle may be specified which

defines a square contour of constant gain for the major side-lobes. That is,

the model assumes that the side-lobe gains in both the horizontal and vertical

planes are equal.

The proposed model for the in-band directive gain pattern is il-

lustrated in Figure 2-160. This model is defined using the same antenna input

parameters but improves upon the existing model by providing the following

features. The transitions between constant-gain levels are defined by
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finite, linear slopes (dB gain vs angle). The slopes are a function of the

beamwidth and tend to enclose the actual pattern. It can be seen that the

proposed model provides a continuous gain function at all angles.

In addition, the proposed model provides circular or elliptical

contours of constant gain in order to more accurately represent the actual

gain in directions off the principal planes.

As indicated in Figure 2-160, all sloping line segments converge to

a common intercept point Co on the gain axis. The value of Co is relative to

the mainbeam gain for a given frequency. For example, in the design band the

mainbeam gain is GB and

Go = Grb + A

Values of A for medium-gain antennas and for high-gain antennas have been de-

termined empirically, as described in the respective sections for these

antennas.

An isometric representation of the proposed pattern model in

rectangular coordinates is illustrated in Figure 2-161. The horizontal axes

are the azimuth and elevation angles. The vertical axis, which represents

the antenna mainbeam axis, is the pattern directive gain. The profiles of

directive gain for the two principle planes are indicated. This model ef-

fectively consists of a truncated cone or frustum to model the mainbeam, and

a second frustum to model the major side-lobes. The base plane represents

the back-lobe gain. Note that both cone models have a common vertex at Go .

The three-dimensional gain model is fully defined by the azimuth

and elevation gain profiles which are derived from user-input antenna para-

meters. The linear equations for the two sloping lines and the coordinates

of the breakpoints at the lower ends of the sloping line segments are presented

below.

It should be remarked here that Os, - Osl in the existing IEMCAP

model. kor the proposed model, a special case is permitted where esl 81l

which is described later.
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Figure 2-162 illustrates a general three-level gain profile with all

breakpoints identified by the following variables:

Gm f peak mainbeam gain
Gs = major side-lobe gain

Gb = back-lobe gain

am = 3 dB half-beamwidth of mainbeam

Oa = angle at which gain = Gs
as = side-lobe angle

= back-lobe angle

These variables are general and may assume values which are a function of

fre, 3ncy for a given antenna. Further, the general gain profile applies to

either the azimuth or the elevation profile. For example, in the design

band, Gm = GmB, Gs = GmsL, 6m = OB or OB, as = sl, etc. Figure 2-162 also

illustrates the relationship

Go = Gm + A

Because of symmetry, only the positive half-plane is analyzed.

In general, the gain levels Gm, Gs, Gb and angles m, Bs are

specified for a given antenna. At out-of-band frequencies these quantities

can be easily derived from expressions specified for a given type of antenna.

However, angles 8 a, 8 b and the equations of the two sloping segments which

are not directly specified, must be derived using the specified quantities.

The following quantities are easily derived from similar triangles

in Figure 2-162.

Gm - Gs + A
$a = m A

Gm - Gs + A

The equation of the mainbeam slope line is:

G) f Gm + A Sn 8G(S) G m A a;z- M 1 _ 8a),
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and the equation for the side-lobe slope is:

Gm - Gs + A
G(O) = Gm + A - a (as 11 < b).

S

It has been assumed in the models described up to this point that

the major side-lobe gain is greater than the back-lobe gain; that- is,

GnsL >GBl

In order to improve generality, the proposed model also permits the back-lobe

gain level to exceed the side-lobe level, as illustrated in Figure 2-163

this case, the side-lobe slope line extends to point GO such that the slope

is the negative of that shown in Figure 2-162. Thus,

GO -Gs  (Go - Gs)

= 2Gs -G o

= 2Gs - Gm - A

That is, Gs is midway between Go and G. Then, for this case the back-lobe

angle is given by
8 b = Bs G, + Gb - 2G s +A ( s I J8 ),

Gm - Gs + A

and the equation of the side-lobe slope line is
G - Gs + A

G(a) - 2Gs - m  + A + am3 as

The complete directive gain model is described in spherical

coordinates. Figure 2-164 illustrates a sphere with center 0 and Points A. B.

C on the surface. The beam axis of the antenna lies along radius vector OA,

thus point A represents the origin of the antenna beam angles *, 0, where

is a horizontal azimuth angle and 8 is a vertical elevation angle. Points

A and B lie on a great circle in a horizontal plane, passing through 0, and

points B and C lie on a great circle in a vertical plane passing through the

poles P, P'. While point A corresponds to the antenna "look" angle, point

C ( ,) corresponds to the direction of a coupling path for which the antenna

gain is to be determined.
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Figure 2-163 General three-level directive-gain profile
in which backlobe. gain exceeds sidelobe gain
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P

Figure 2-164 Spherical trigonometric angle, associated
with beam pattern model
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The antenna gain pattern, which is specified by the azimuth and

elevation profiles, as illustrated in Figure 2-160, is thus defined in the

azimuth plane OAB and the elevation plane OPAP' of Figure 2-164. It is assumed

that constant-gain contours in the model have a general elliptical shape in

terms of 0 and e. Thus, for directions off the principal planes, the model

gain is determined by calculating the elliptical gain contour passing through

the given point. The ellipse contours are defined by polar coordinates (p, *)

as shown in Figure 2-164. With the application of spherical trigonometry to

right spherical triangle ABC, coordinates p, P relate to 4, e by the following:

cosp - cos cos 0

tan * -tan=
sin

The polar equation of an ellipse is usually expressed as a function of (r, 0 )

2 
a2b

2

2 2 2 2a sin2 9 +b cos 

where a and b are the semi-axes. Substitutuion of the identities

s2e 1 2 1
sinO2 = 1 1Cos 2 =

1+ C1 +tan 2 0
tan e

gives the alternate expresion
2

S= 1 + tan 0r-2
1 + 1Ltan 0

a b b 2

In terms of the spherical quantities (p, this expression becomes

22
2 1+ tan 2

11 2
2 2 tan '

0 0

where r and 0 are the semi-axes of the (spherical) ellipse.
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It is desired to determine the gain profile in the plane OAC which

is rotated by i from the principal azimuth plane OAB. The above expression

can be used to calculate the beam angles am, a , as, and ab for the profile

by substituting the corresponding values for (P and 0 . For example, by0 0

setting o = 6B and 00 = 0 , then am = p((). Also, with (P = Psl and 0 =

0s, then s = p(). Values of a and b are given similarly by p(P)

using values of ( and 0 set equal to the respective azimuth and elevation
0 0

beam angles B , B calculated in the principle planes.
a b

The value of gain at (p,i) is then given directly by the profile

with O=P.

The directive-gain model is also applied to the out-of-band

patterns of antennas. Since the model is fully defined by gain profile

functions in the two principal planes, the out-of-band model is based on the

profiles adjusted for out-of-band performance.

In general, the design band model will tend to deteriorate with

out-of-band frequency. The mainbeam and side-lobe gains generally drop and

the beamwidths increase until eventually the pattern degenerates into an iso-

tropic pattern. All out-of-band effects are defined by frequency-dependent

adjustments of the specified in-band parameters of gains and beam angles.

The frequency functions are relative to fL and f which define the lower

and upper limits of the design band.

2.16.3 Directive Gain Models of Medium-Gain Antennas

The directive gain of medium-gain antennas is considered to lie

in the range from 10 dB to 20 dB or 25 dB. Examples of medium-gain antennas

are the Yagi-Uda beam array, long-periodic, log-spiral, helical, corner re-

flector, and sectoral horn.

In order to apply the directive-gain pattern model to this class

of antennas, the determination of the slope intercept point G was made as

described below.

A series of directive-gain patterns for various beamwidths were

calculated and plotted on rectangular coordinates of Gain (dB) vs angle with
0

the mainbeam axis at 0 . These patterns represented those of a linear array

of dipoles, such as a Yagi-Uda beam or a log-periodic antenna.

2-163



0

'-4

0

0
-4
0

C-)o
- 0

C..
C.)
0
w

0

o Cu
C' I-.

C..
0 Cu
0
C.)

0 '4-.
V 0

0.

Cu
0
0
0
4-)

0
Cu

-'-4

~0

'-4

c'J
0
I-.
bo
'-4

0 ~ 0 0 0
I I 4 .4 Cl Cl

I I I I I

gp '9

2-164



00

La4

00

2-165



AD-AIIN 752 ATLANTIC RESEARCH4 CORP ALEXANDRIA VA F/6 20/3
INTRASYSTEM ANALYSIS PROSRAM (IAP) MODEL IMPROVEMENT.(U)
FEB 02 T E BALDWIN, W S DUFF, J J FDSTER F30A02-79-C-0169

UNCLASSIFIED RADC-TR-52-20 NL

IIIIIIIIIIIE~I
IIIIIIIIIIIIIu
IIIIIEEEIIEEEE
IIIIIIIIIIIIII
IIIIIIIIIIIIII

IIIIIIfflllflll ll.
Emhmhhmhmhhh



1111I1 5 L 34 11111206

MICROCOPY RESOLUTION TEST CHART

NAtIONAL lik0J AL uf ',ANUDARD[196 A



The general expression for the pattern of an array of identical

elements is 19, page 219]

EA () =k n  E (4)). E ()

where

EA (4) = antenna pattern factor

Ee (4) = element factor

Ea()) = array factor
a

k = normalizing constantn

That is, the pattern of the array is obtained by multiplying the pattern of

single element by the pattern of the array as calculated for isotropic

point-source elements. The array factor is given by

n d .- o
sin n( 2_in )

Ea T __ _ __ _

where the array consists of n elements with equal spacing d and phase
difference a between adjacent elements.

For this study, two different element patterns were used. In

the plane perpendicular to the elements (H-plane), the pattern of each

element is isotropic -- that is,

Eel (4) - 1

In the plane containing the elements (E-plane) the element pattern is a

figure 8 given by

Ee2 (M) - 1cos 01

The resulting array patterns are presented in Figure 2-165 for the isotropic

elements and Figure 2-166 for the cosO elements. All curves are normalized

to 0 dB peak by setting kn . 1. The gain value shown was calculated by

G + 20 log EA M.
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The widest pattern in each figure is that of a cardioid (n=2, d=X/4, a=900 ).

For the remaining patterns d=.3\ and a=1080 . In each figure the 3 dB beam-

width was determined and indicated on the -axis. Straight lines were drawn

through these points tangent to the corresponding pattern curve. It is

apparent that the (negative) slopes of these lines tend to decrease

proportionally with the 3 dB beamwidth, that is, they tend to converge to

a point G0 on the G axis. The convergence point for the isotropic elements

is approximately G +30 dB while that for the coss elements is about
mB

G mB+20 dB. Consequently, a practical compromise of Go = G mB+25 dB or

A =25, was selected for both pattern families, as indicated by the dashed

lines in both figures. This value of A is applied to the modeling of all

medium-gain antennas.

A feature which is common among medium-gain antennas which

consist of linear, dipole elements lying in one plane, such as the Yagi-Uda

beam or log-periodic antennas, is that there is relatively little radiation

off the ends of the elements. Consequently, the major side-lobe gain of

the E-plane patterns for these antennas tends to be -latively weak and is

usually exceeded by the back-lobe gain. The major side-lobes for linear

antenna arrays have peaks lying in the orthogonal plane (H-plane) where the

individual elements radiate omnidirectionally.

Although the side-lobe cone segment of the proposed model is

defined in terms of GL, sl and 0 only G and s are user input.sL I sl' msL sl
The existing antenna model In IEMCAP assumes 0sl = sl" For the proposed

model the value of 0 will depend on the specified polarization. For

circular polarization 0l sl' corresponding to circular contours of

constant side-lobe gain. For horizontal or vertical polarization, the

specified side-lobe angle $s is applied only to the H-plane pattern. For

these cases it is assumed that no major side-lobes exist in the E-plane

pattern which is, therefore, only a two-level profile.

An isometric view illustrating this special model is shown in

Figure 2-167. As shown, the base of the mainbeam cone is tangent to the

ellipse on the truncation plane of the sidr-lobe cone. For the E-plane

profile the mainbeam slope extends from GMB down to GBI with a constant slope.

2-167

... .... ... . ' " _ . " 1 ' .. .. - . . .. . .. . . .. . . ... , ..

.. . ... . ... .. - IIII I



G

Tangent point

E-plane

Figure 2-167 Three-dimensional illustratidn of directive
gain model f or a linear beam antenna
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This slope line passes through the tangent point where the gain equals GL.

The tangent point always lies in the E-plane profile which is the O-plane

profile for a horizontally polarized antenna or the 6-plane profile for a

vertically polarized antenna.

The tangent point of this special model lies at the extremity

of the semi-minor axis of the ellipse defining the side-lobe cone segment.

The beam angle to this point is Ba= s as indicated in Figure 2-162 and given

in section 2-16.2.

The out-of-band characteristics of typical medium-gain resonant

antennas have been reported [16, page 5-24D the mainbeam gain decreases

6 dB, the 3 dB-beamwidth doubles, and the major side-lobes vanish. These

characteristics have been applied to the proposed antenna model.

The specific directive gain models which are proposed for

various types of medium-gain antennas are described in the following

sections. The first model described is for a Yagi-Uda beam array. This

model is presented in detail and serves as an example for the remaining

models which are defined in brief.

2.16.3.1 Directive Gain Model for Yagi-Uda Beam Antenna

The Yagi-Uda beam antenna is considered to be an array of linear

dipole elements in which only one is active. The remaining elements (reflector

and directors) are parasitic of slightly different lengths than the active

element. This tapering of element lengths along the beam array tends to

increase the overall usable bandwidth of the antenna relative to the beam-

width of the active element alone. In many cases the active element is a

folded dipole.

The directive gain model assumes two major effects at out-of-band
1

frequencies. First, at frequencies - f and 3f outside the design band, the

gain and beamwidths degenerate into an isotropic pattern. Second, at

frequencies above 3fV the dipole pattern of the active element dominates and

is superimposed on the isotropic pattern.

The proposed directive gain model is defined in Table 2-7. Each

colum defines the relative values of the parameters occurring at the

i
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Table 2-7 Breakpoint Parameter Table for

Yagi Uda Antenna Model

Breakpoint Frequencies

Para-
meters 1 1 1meefL 2f f to f 2f 3f >3f

3L 3L 2L L u u U u

Gmb - 0 dB GmB-6 GmB GM-6 0 dB

4,eB 20B920 B OB'0eB 20 W 620 B --

GmsL  - BI B msL  - _

sl- - sl sl sl

GB1 0 dB 0 dB GB1 GB1 GB1 0 dB 0 dB
+ Dipole
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designate breakpoint frequency. The center column, which represents the

design band f to ful lists the user input parameters for the antenna. All

transitions of gain (in dB) and angles between breakpoints are linear with

frequency.

The transition from f P to 2f,,, which is the same as that shown for
1

f to - f is illustrated in Figure 2-168a. The mainbeam gain drops 6 dB and
L 2 L9
the beamwidth doubles within the transition. Also, the major side-lobe gain

(if any) decreases to the back-lobe gain level during the transition. The

corner point (GmsL' 0sl) of the pattern drops linearly with frequency to

(GBl, Osl ) . At the end of the first transition the major side-lobe has

vanished. Further increase in the out-of-band frequency results in the

pattern to transition linearly to the second breakpoint at 3f (or 1 f

This second transition is illustrated in Figure 2-168b in which both the main-

beam gain and the back-lobe gain transition linearly with frequency to the

O dB level. At the second out-of-band breakpoint the model patterns are

defined by a constant 0 dB level which represents an isotropic radiator.

For frequencies above 3f,, the model pattern is the superposition

of a dipole pattern presented in Section 2.16.1 and a 0 dB isotropic radiator.

This model is defined as the dipole model in which a gain value of less than

0 dB is set equal to 0 dB. The resonant frequency of the dipole may be

defined as

0

Expressions for the various out-of-band transitions of the break-

point parameters defined in Table 7-7 may be derived from one general expression

A linear transition of (f, a) from (fl' a1 ) to(f 2 ' a2 ) is described by

f - fl

a (f) - (a2 -a
) + a

f2- f1 2 1 1

The values of constants fl, f2 9 a,, and a2 for each transition defined in

Table 2-7 are enumerated in Table 2-8.

Since the Yagi-Uda antenna is an array of linear dipoles, the

specified side-lobe angle *sl is applied only to the H-plane pattern, as

discussed in Section 2.16.3.
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76 dB - Pattern at fYor Y
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Figure 2-168a Transition with frequency of pattern model

from design band to first breakpoint,

G(dB)

0 dB

/ GB

Figure 2-168b Transition with frequency of pattern model
from first to second breakpoints
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Table 2-8 Frequency Transition Table f or Yagi-Uda Antenna Model

Transition f I f 2 Parameter a 1 a2

1 1 1 Mainbeam Gain 0 GB-6

-=f < f<-f -f_________________
3 L- -2L 3'L f

Backlobe Gain 0 G Bl

Mainbeam Gain GM -6 G B1

if f<f L fL fL 3 dB Beamwidths *0 2eB OB

Sidelobe Gain G Bl G s

f U<f<2f uf u 2f u Mainbeam Gain G CB GB.6

3 dB Beamwidths B2 0B 20 B92e B

Sidelobe Gain G G
MsL sl

2f <f<3f 2f 3f Mainbeam Gain G -6 0
u--u u u _______ tB ___

Backlobe Gain G 0
Bl
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2.16.3.2 Directive Gain Model for Log-Periodic Antenna

The log-periodic antenna may be considered as an array of linear

elements in which the phase center generally shifts position with frequency.

Since the behavior of the log-periodic antenna is similar to that of a Yaga-Uda

beam antenna, the proposed model for the log-periodic is the same as that given

in Table 2-7, with the exception that the superposition of a dipole pattern above

3f is omitted. It is felt that the alternating polarity of successive dipolesu

may tend to cancel signals received on several elements simultaneously at fre-

quencies above the design band.

Although the design band may be relatively wide - e.g., f /f =10 -
u L

the design gain and beamwidth of a log-periodic antenna are assumed to remain

constant over the design band.

Since the log-periodic antenna is an array of linear dipoles, the

specified sidelobe angle 0sl is applied only to the H-plane pattern, as de-

scribed in Section 2.16.3.

2.16.3.3 Directive Gain Model for a Helical Antenna

Helical antennas generally exhibit two modes of operation: a low-

frequency mode, where it behaves like a monopole, and a high-frequency mode,

which is end-fire of mrdium gain. This latter mode is the normal mode of

operation and is assumed to be the mode for which the user specifies the input

parameters. Thus, within the design band from fL to fu the radiation pattern

is modeled as a medium-gain antenna.' Major sidelobes may or may not be

specified. Since the helix is symmetrical the field is circularly polarized

and B B6B9sffisl. The proposed model provides a transition of this pattern

into an isotropic pattern outside the design band. At frequencies below the

design band the isotropic pattern transitions into a figure-8 pattern of a

dipole with the axis aligned with the helix axis. The proposed model is

defined in the following table.
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Breakpoint Frequencies

Para-
meters 1 f tof 2f 3f >3f

2fL 2L L u u u u

0 dB GnB GmB-6  0 dB

B B  Isotropic 20 Bs 20 B  aBB 2,B'e 2 B 2B -+

Dipole

G 0 dB G 0 dB - -

CsL msL

sl 4sl Osl sl - _

G 0 dB GB 0 dB 0 dB 0 dB

For frequencies less than if , the model consists of the super-
2L'

position of an isotropic pattern and a figure-8 pattern. The maximum gain of

the figure-8 pattern remains fixed at 1.0=0 dB, while the isotropic pattern
1

decreases linearly with frequency to -20 dB at lL The equation for the

isotropic transition is given by

fL f
8 2f fL LGis (f) = -20 x 8(.?-) dB(C- Lfi - )

The gain is the larger of the two patterns determined at any 0,6.

2.16.3.4 Directive Gain Model for a Corner Reflector

The mainbeam of a corner reflector antenna operating within the

design band is of medium gain with little or no backlobe and sidelobes. This

region is modeled by the user-defined conical model. Above the design band

the beam tends to deteriorate as radiation begins to leak through the reflector,

which is usually an open mesh. Since the feed element is usally some type of

dipole, there will tend to be nulls along the dipole axis. Thus, the pattern

does not transition into an isotropic pattern. Instead, the pattern above the

design band is the superposition of the concial beam and that of a dipole,

whichever provides the larger gain for a given O,e. At f when the mainbeam

develops in magnitude from
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-20 dB to 0 dB at 2f . From 2f to 4f the mainbeam vanishes and the maximum
U U u

gain of the figure-8 pattern increases to 3 dB, which remains for all higher

frequencies. The standard dipole pattern model is not applied here since the

feed element often is a discone which is preseumed not to experience increased

gain with higher order resonances.

Below the design band the model transitions into an isotropic

pattern. It is felt that at frequencies well below the design band the entire

antenna assembly would tend to appear as a fat dipole and provide radiation in

nearly all directions. The reflector would no longer be effective and would

tend to carry induced currentsin phase with the driven dipole.

The proposed model is summarized in the following table;

Parameters Breakpoint Frequencies

f tof 2f 4f >4f
4fL 4fL L u u u u

GB - 0dB GB GmB 6  GB1

-
2 B, 2 B B,eB 2 0B, 2 6B 2 B,20B GBl

nL0 dB G Figure8
(3 dB)

Csl - 4sl 4 sl sl-

GfBI 0 dB 0 dB GBI GB, G B1

The maximum directive gain of the figure-8 pattern in the range

f U<f<2f uis given

Cd (f) = 20 (L- - 2) dB

The gain then increases to +3 dB in the range 2f u <f<4f u, as given by

Gdi(f) - 3( ! - - 1) dB.
U
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2.16.3.5 Directive Gain Model for a Horn Antenna

The design band of a horn antenna usually ranges over one octave -

i.e., fug2fL. The lower coutoff frequency is usually just below f Within

the design band the user specifies the pattern parameters which are presumed

to apply to midband. The 3-dB beamwidths are inversely proportional with

frequency [9, page 1941 and, therefore, the directivity increases with the

square of the frequency. Consequently, the midband mainbeam gain GMB should

not present more than 3 dB error from the gains at fL and fu"

As the frequency increases above fu the gain continues to increase.

However, higher order modes can occur in an unpredictable manner which result

in split beams and generally multilobing. While the directivity of individual

beams may be considerably high, the beams tend to be narrow with unpredictable

orientations.

The proposed model for horn antennas consists of the conical model

for medium-gain antennas. The model remains constant for all frequencies below

2f . In the range from 2f to 4f the mainbeam makes a transition which is
u u u

linear with frequency that reduces the peak directive gain by 6 dB and doubles

the beamwidth. The sidelobe and backlobe parameters remain fixed for all

frequencies to account for higher fiequency effects. The model does not change

below f The effect of waveguide cutoff is fully accounted for in the trans-

mission loss term. The following table summarizes Lhe directive gain model for

a horn antenna.

Parameters Breakpoint Frequencies

<fL fL to f 2f 4f >4f

GB GB GrB G G rB-6

B,0B B,0B B' 0 B OB0eB 2 0B, 2 0 8 2 B120 B

GMSL  GmsL GmsL GmsL GmsL GmsL

Osl Osl Osl Osl sl Osl

GB GB G G G G

BI Bl Bl Bl B B
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2.16.4 Pattern Model for High-Gain Antennas

The directive gain of a high-gain antenna operating within its

design band is considered to be greater than 20 to 25 dB. Types of antennas

w! *a this classification are large arrays, such as phased arrays, and

S ure antennas which are designed to produce a highly focused beam, such as

large horn antennas, reflector antennas, and lens anLeLuLas. The predominant

type of high-gain antenna is the reflector aperture type in which a parabolic

dish reflects radiation from a primary feed antenna into a highly collimated

beam. Radar antennas are the most common application of this type.

The proposed pattern model for high-gain antennas is the three-

level conical model described in Section 2.16.2. For application to high-gain

antennas, this model requires a different value of the slope intercept offset

than used for the medium-gain antennas. In order to determine a practical

value of A a variety of theoretical radiation patterns have been studied.

Table 2-9 lists 22 pattern shapes based on different types of aperture dis-

tributions of the primary radiation. [17, pages 268-333] For each type of

secondary radiation pattern, the depth of the first major sidelobe was noted,

and the position of the best model fit was determined. This fitting process

consisted of adjusting the slope of a straight line passing through the point

(GmB' B )-to given the best fiL to the mainlobe along one side to the level

of the first major sidelobe GmsL . The intercept of this line on the gain axis

above GmB is A. In Table 2-9, the values of the theoretical sidelobe gain and

A are in dB relative to the mainbeam peak level of 0 dB. As seen in the Table,

there is a relatively narrow spread in A measured. The data exhibits a slight

tendency for A to increase with the depth of the major sidelobe; however, this

relationship is not sufficiently distinct to justify the use of a functional

relationship. For the proposed model, a value of A = 17 dB is selected as

being the average of the A values listed in Table 2-9. The selection of 17 dB is

also weighted by the A values of the more commonly used types of aperture dis-

tributions: cosine, cosine2 , and cosine-on-pedestal. The model appears to

provide a good fit to the theoretical mainlobe patterns representing practical

types of aperture antennas. The model fit was performed on a graphic plot of

dB gain vs 4 of normalized curves. Consequently, the model applies to any

specified bearnwidth which corresponds to linear scaling of the 4-axis for the

normalized curves.

2-178



Table 2-9 Model Parameters for Radar Antenna Patterns

Illumination First Sidelobe, d3 AdB

1. Uniform -13 +16

2. Cosine -23 17.5

3. Cosine2  -31 18

4. Cosine 3  -39 18

5. Parabolic -21 18.5

6. Triangular -26 17

7. Truncated Gaussian, n=l, 7, 20 dB Sidelobes -21 16

8. Truncated Gaussian, n=
2 ,4, 30 dB Sidelobes -35 17.5

9. Truncated Gaussian, n-
2 ,8, 40 dB Sidelobes -37 15

10. Cosine-on-pedestal -22 16

11. Taylor, 5i2, 20 dB Sidelobes -21 18

12. Taylor fi=4, 30 dB Sidelobes -31 17.5

13. Taylor, h=6, 40 dB Sidelobes -42 19

14. Hamming -46 18

15. Uniform Circular -18 17

16. Parabolic Circular -25 18

17. Truncated Gaussian Circular, n=l, 1.7 -23 17

18. Truncated Gaussian Circular, n=2, 4 -34 18

19. Truncated Gaussian Circular, n=2, 8 -40 16

20. Taylor Circular, i=2 -22 16

21. Taylor Circular, R=4 -31 18

22. Taylor Circular, fi=6 -42 17.5

2I
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The out-of-band characteristics of high-gain antennas have been

reported [16, page 5-13]. These general results indicate that off the design

frequency the mainbeam deteriorates by 8 dB, the 3-dB beamwidth triples, and

the major sidelobes vanish. These characteristics are applied to the proposed

model.

The proposed model for high-gain antennas is defined in the

Breakpoint Parameter Table below.

Parameters Breakpoint Frequencies

<.ifL  l.fL fL to f 4f lOf >lOf

GMB 0 GmB GmB- 0

OB,eB 3 0B,36B OBeB 30B, 3 6B 3 B,3eB

G msL 0 Gins L

sl -sl sl sl

Bl 0 0 GBl GBI 0 0
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2.16.5 Directive Gain Model for a Loop Antenna

An electrical small loop has a figure 8 pattern of a monopole

aligned with the axis of the loop. Typically, the gain of a small loop is

considerably less than that of an isotrope (0 dB) and tends to increase with

frequency. The gain of a loop having a full-wave circumference is more than

3 dB. Higher frequencies can result in lobing in'most any direction. Thus,

the model for a loop should provide the figure 8 pattern of increasing size

through the electircally-short region and degenerate into an isotrope at

higher frequencies. The determination of the frequency at which a loop is

no longer electrically small is presumed to be derived from the physical

diameter d specified for the loop. Let f be the frequency at which the0

circumference of the loop is one wavelength. That is,

X = 71d meters.

300 300 100Tnen f ... = -- MHz
0 1 Trd d

If the design frequency of a loop is f1 with an associated gain of G1 , then

the gain of the loop is considered to increase to 0 dB at f due to radia-
0

tion resistance, as follows:

f -f
GmB (f) =G1 --

Superimposed on the figure 8 pattern is an isotropic pattern which minimizes

the null depth of the figure 8 pattern. The gain of the isotropic pattern

is proposed to lie 10 dB below the peak gain of the figure 8 pattern at all

1 1
frequencies below -f. From - fo to f the isotropic gain level increases

linearly to reduce the null depth. The gain of the isotropic pattern is
proposed as

F fo
G (f) = Gm(f) - 20 (1- ) , fifo

Within the frequency range f o to f the directive gain is equal to that of

the figure 8 pattern or of The isotropic pattern, whichever is larger.

Above fo the directive gain remains as 0 dB with an isotropic

pattern.
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2.16.A Directive Gain Model for a Planer Log-Spiral Antenna

The planer log-spiral antenna is a low-gain, omnidirectional,

circularly polarized, wideband antenna which typically has a design band

pattern of a cordioid. The antenna generally contains an absorbing sheet

behind the conducting plane to minimize back-lobe radiation.

The proposed model for this antenna is defined in the table

below. The application of a two-level beam pattern as described by a

frustrum over a plane may be used here.

Breakpoint Frequencies
Parameters 1 1

< 1 f -f f to f 2f > 2f
2L 2 L L U U U

G B --- 0 dB G B 0 dB -_
m m

B% 6B --- B 0B $B,eB B'aB

GmsL  --- 0 dB GmsL  0 dB

Ssl --- sl sl Osl ---

GB1 0 dB 0 dB GB1 0 dB 0 dB

The model permits the user to specify major side-lobe parameters,

if desired.

2.16.7 Directive Gain Model for a Conical Log-Spiral Antenna

The conical log-spiral antenna is a broadband, low-gain antenna

consisting of two balanced conductors wrapped in a spiral about a conical

form. The conductors are closely space at the vertex where they are fed.

The spacing increases logarithmically along the cone. The radiation

pattern of this type of antenna is typically an omnidirectional figure 8

pattern with the nulls lying on the axis of the cone. The radiation is

circularly polarized. THe maximum gain is typically 0 dB to 3 dB relative
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to an isotrope. Measured patterns dicate a filling in of the forward

axial null.

The proposed model for the conical log-spiral antenna is a

figure 8 pattern of 0 dB gain for all frequencies below the upper design

frequency f Superimposed on this is an isotropic pattern with a gain that

increases linearly with frequency from -10 dB at the lower design. frequency

f toO0 dB at f .The gain in any direction is the larger of these two
L U*

patterns. Above f U the gain remains constant at 0 dB with an isotropic

pattern.

2.17 Antenna Power Dissapation Factor

Antennas are generally designed to operate efficiently within

their design frequency band. The shapes of the radiating elements, the

physical arrangement of conductors in the feed circuits, and dielectric

materials within the antenna are designed to provide acceptably low losses

to the total power delivered to the antenna. An important consideration in

the design are stray capacitances between adjacent conductors and between

conductors and ground such as the antenna frame or case which encloses input

feed circuitry. At design band frequencies the displacement currents flowing

through stray capacitive circuits and the power dissipated in any dielectrics

are designed to be a relatively small fraction of the total antenna current

or power.

At frequencies considerably above the design band the stray

capacitances offer less reactance and tend to short circuit the desired antenna

circuit. This represents a flow of power that does not reach the radiating

elements of the antenna. The by-passing effects of stray capacitances

increases with frequency and generally become a dominating factor of antenna

performance at sufficiently high frequencies. In addition, dielectric losses

generally increase with frequency.

The proposed antenna model accounts for these power losses with

a third term, called the Power Dissapation Factor F. This factor, then

includes the effective loss of antenna power due to stray capacitances within

the antenna feed circuits and ohmic losses due to imperfect dielectrics and
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conductors within the antenna. Since high-gain antennas and horn antennas do

not usually contain feed circuitry, FD will be applied only to low-gain

antennas and medium-gain antennas except horn antennas.

The modeling of F is accomplished by assuming a frequency
D

dependent shunt resistor R in parallel with the antenna radiation resistance
S

Ra, as shown below

i is R ia Ra

The power efficiency of this circuit is

P Pa - a
P P +P

t s a

where P = power radiated = i 2 Ra a a

P = power loss = i 2 R

P = total power absorbed by antenna.~t
SV2 V2

Since P = - and P =

a Ra  s R '

R 1
+ R ffi R- /R sS a

Based on the inverse frequency dependence of capacitive reactance, let it be

assumed that

1

s k of

Let the initializing constant k be established by the following conditions.
0

R -10 R at f - fu

where fU is the upper frequency limit of the antenna design band. Then,

1 1
o R f Rf
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With this constant substituted into R which is then substituted into thes

efficiency expression, we have

1

1 + 0.1 
U

or "dB = 10 lognl - 10 log (I + O.lfIfu).

The efficiency at f=fu. -0.4 dB. This initial loss is removed from the above

model to result in the following expression for the Power Dissipation Factor:

FD (dB) = 0.4 - 10 log (1 + 0.1

which applies only for f > f

Several values of FD are tabulated below.

f/fu FD (dB)

1 0.0
10 -2.6
100 -10.0

1000 -19.6

An example of this loss term applied to an antenna having an

upper frequency limit of 1 MHz is shown in Figure 2-169.

2.18 Transmission Line Factor

The attenuation loss of the rf transmission line between the

antenna terminal and the transmitter output port or receiver input port is

included in the proposed antenna model as a fourth term called the Trans-

mission Line Factor FL. Two types of transmission lines are considered,

coaxial cables and waveguides. Each type is treated separately below.

2.18.1 Attenatation Model for Coaxial Lines

A wide variety of coaxial cables exist for rf applications.

Figure 2-170 illustrates the attenuation curves of a number of general-purpose

lines and cables K4, page 22-4. Most of these are coaxial lines, but wave-

guide and microstrip are included for comparison. The various coaxial lines

have a wide spread in attenuation rate at a given frequency; however, all

the attenuation curves shown tend to increase approximately with /T
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The total attenuation TL of a coaxial line of length L in feet

is given by

TL () A (dB)

where A is the attenuation rate of the line in dB/lO0 feet at frequency f.

Let it be assumed that A varies with frequency as

A = k/ -

where k is an initializing constant which allows the value of A = A to be0

defined for f = f . That is,
0

A
0

k=

0

and A=A 7  "
A A

0
0

Substituting this function into the expression for the total line attenuation,

we have

f
FL= (i-i) A f(dB)

L 0 0

for modeling the attenuation of a coaxial transmission line. A practical

choice for fo would be the center design frequency fo = fLU specified for

the antenna. It is therefore required that the user specify the length L

of the coaxial line and the attenuation rate A at f .

2.18.2 Attenuation in Waveguides

The attenuation rates for waveguides are considerably less than

those for most coaxial lines, as seen in Figure 2-170. The five waveguide

samples indicated in this figure typically show attenuation rates decreasing

with frequency. The reason for this, however, is due to the effect of cutoif

frequency on the attenuation curve. Figure 2-171 presents the attenuation curves

for several modes of propagation in a rectangular waveguide W78, page 132. The

lower frequency end of each curve is asymptotic to a cutoff frequency, and the

*Ihigher frequency portion of each curve tends to increase with V'T. In order
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to prevent higher order modes from occurring, the waveguide should operate only

within the frequency range which permits the TE 10to exist. As seen in Figure

2-171 this mode will be ensured if the frequency range extends from slightly

above cutoff (3 x 10O3 MHz) to less than twice the cutoff frequency. In this

region the slope of attenuation curve is negative and corresponds to the

design band curves in Figure ?-170. Consequently, the design band attenuation

rate of a waveguide is reasonably accurate over nearly a decade of frequency

ranged above cutoff. As a result, the frequency dependent nature of wsave-

guide attenuation does not appear to be significant and is not included in

the proposed Transmission Line Factor. The user may indicate a waveguide

transmission line, along with the total attenuation of the line. This loss

becomes added to the antenna gain. Thus, the user should not include line

losses in the specified antenna gains. The specification of a waveguide

transmission line would also cause the model to apply the cutoff frequency

model of the Impedance Matching Fa~ctor for a horn to the associated antenna,

which may not be a horn.
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2.19 SUMMARY OF ANTENNA GAIN MODEL

The antenna gain model calculates the power gain in dB of a

specified type of antenna at a given frequency and arbitrary direction p, 0
relative to the antenna axis. The model consists ot four independent terms

which add (in dB) to give the resultant antenna gain.

G(f,,) = FL + F + Fd + P'L z d p

where FL  Transmission line factor

Fz  Impedance matching factor

F = Power dissipation factor

F = Directive gain pattern factor.P

The inputs to the model consist of fixed and variable parameters

listed in Table 2-10. Also shown in this table are the parameters which are

not currently in IEMCAP and those required for each of the four terms of the

model. The proposed model requires seven new input parameters which are not

currently used in IEMCAP. The "look" angles 0 and o which define antenna
0 0

orientation correspond to the mainbeam pointing direction of medium and high

gain antennas, and the axis pointing direction of low-gain antennas.

The alogrithms used for each of the four terms of the model are

summarized below.

Transmission Line Factor

The transmision line factor FL represents the dB loss of power in

the rf transmission line between the transmitter or receiver and the antenna.

For a coaxial line, FL is a function of frequency given by

F -10 log A
L 00~ol

where f 
=  f"
1 L Uf

For a waveguide, FL=0 if F zwaveguide algorithm. Otherwise,

F Laveguide algorithm ior F .
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TABLE. 2-10. input paramenters required for proposed antenna gain model.
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_mpedance Iatching Factor

The impedance matching factor Fz represents the dB loss of power

due to an impedance mismatch between the transmission line and the antenna

terminals. Within the design band the antenna is assumed to be perfectly

matched. F is calculated for a specified antenna model by one of three
z

algorithms:

1. Resonant dipole algorithm

2. Matched dipole alrogithm

3. Waveguide algorithm.

Eash of these algorithms is presented below.

Resonant Dipole Algorithm for F
z

First resonant frequency fl = € LI FLU

fi
Q of first resonance Q= fu-fL

Resonant frequency of order n:

w f11-1.083
where A =2 + 0.818 Q1

Q of nth order resonance:

log Qn = 0.115 log ni+ log Q,

The selectivity curve for the nth resonance is given by the

modified universal resonance functions:

MURF (f) = I + 2  ) 2

n (n L fIJ
-0.288 log f

Null level N(f) = -3.0 -16.53l

For f < fl9 F z(f) = 10 log MURFI(f)

10 log MURF (f)
n

For f>fl, Fz(f) = max
21N(f)
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Matched Dipole Alorithm for F
Z

For Q1<3,

10 log MURF(f) f < f
Fz (f) -

z 0 f >f

For 3<Q1<15,

( 0 log MURF(f) f<l.8f
z (f 0 f>l.8f I

For Q1 >15,

10 log MURF(f) ff 1

F z(f)=MAX(10 log MURF(f),-20) f<l.8f I

10 ff>l.8f 1

Waveguide Al .orithn for F

-20 f<0. 6f
Lzz

F z (f) = 00 -L 80 O. 6f Lf<. 8fl .

0 f> . 8f L

Power Dissipation Factor

The power dissipation factor Fd represents a power loss in the

antenna due to stray capacitances, dielectric losses and other possible sources

of antenna degradation which generally become noticeable at frequencies con-

siderably above the design band. The model algorithm used for this term is

(03 f<f
Fd(f) 0.4 -10 log (1+0.1 L). f>f

d .f U

Directive Gain Pattern Factor

The directive gain pattern factor F represents the antenna gain
p

due to the radiation pattern in free space.

F is calculated for a specified antenna model by one or more of
p

three algorithms:

1. Dipole pattern algorithm

2. Medium-gain pattern algorithm

3. High-gain pattern algorithm
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The first step for each antenna is to align the coordinate system

with the antenna axis ( 0 ,Oo)by means of an Euler transformation and determine

the relative direction (pQ) oZ the coupling path for which the gain is to be

calculated.

Dipole Pattern Aleorithm for F

h h= for mononole

Region I: O< < .5 ( for dipole

G(o) = max{.

ii
Region II: .5< <.75

2
n

C(U) = 2n -l 1 sin0f
0

where no= 2.5n-4 (n=41, no-lO - 410

If GisinOl 11, then G = 1 , #0.
Tsin7i

If G<.l, then G= .I

Region III: .75< h

2
n

C,(2) = o Isin2no-

where n = n+.50

- lo(h)+.

if Glsinn1h >1, then G = TsinO ; )O0.

If G<.l, then C=.I

The resultins factor is

F (0) = I' log G(O)
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Medium-gain Pattern Algorithm for F

The proposed directive-gain pattern model for medium-gain antennas

is a general three-level gain pattern consisting of the mainbeam gain, major

sidelobe gain, and backlobe gain. This pattern model is similar to the exist-

ing model in IEMCAP but has the advantage of providing continuous transitions

between gain levels which are modeled by sections of cones.

At any given frequency the pattern model is fully defined by the

gain profile in each of the two principal planes of azimuth ( -plane) and

elevation (0-plane). Figure 2-162 shows an example of a gain profile showing

various parameters required to define the profile. For cases in which the

backlobe gain exceeds the sidelobe gain the profile has the general appearance

illustrated in Figure 2-163.

The azimuth and elevation profiles for the design band are defined

initially by user input quantities. The three gain levels are given by

Gm G mB

Gs G msL

G =B
b Bl

The beam angle breakpoints are given by

Azimuth profile: m = B

8s = sl

Elevation profile: m = 0B

as = sl

G -( + A

a m A

G -Gb+ A

a m b (G >G)
= 

8sG-G+A msL Bl
b m s

Gm+Gb- 2 Gs+A
ab - aBs G -G + A (GmsL<GBI

m s

A - 25 dB

where the corresponding values of am and a8 are substituted for the azimuth

and elevation profiles.
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The out-of-band changes of directive gain with frequency are

defined in terms of adjustments to the profile breakpoints as a function of

frequencies relative to the design-band limits fL and f The out-of-band

adjustments are presented in tables accompanying the discussions of the medium-

gain antenna models.

In general, the breakpoint of a profile is defined by coordinates

(G, A. Each of these variables can be adjusted with frequency in which the

transition between f and f2 is assumed to be linear with frequency. According-

ly, if x represents either G or 5 of a breakpoint, then the linear transition

of x(f) from (xl, fl) to (x2 , f2 ) is given by

x(f) = f2-f (x2 -xl) +x I .

After the gain profiles in the two principal planes have been

adjusted to the test frequency, the relative angular coordinates of the

coupling path must be determined in polar form. The direction of the path at

which the gain is to be calculated is given in rectangular form by (%,G).

The corresponding coordinates (p, T ) in polar form are given by

C cos c cosc

tan e
yC . sin%

The plane containing both the antenna axis and the coupling path

is rotated from the azimuth plane (0-plane) by angle T c. The next step is to

calculate the gain profile in this plane using values defining the breakpoints

of the profiles in the principal planes as follows. The gain values remain

unchanged. The beam angles of the breakpoints are calculated using a polar

equation for an elltpse having semi-axes i and 0,, which represent the beam

angles in the azimuth and elevation profiles of the ith breakpoint. The beam

angle of this breakpoint at angle T is given by

c

1+tan 2 2C

+ tan T
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The final step is to determine the directive gain from this profile

for a beam angle $=PC . The equations of the transition lines in the profiles

are given below. The mainbeam-sidelobe transition line is given by

GM( 8 ) = Gm + - A__ (tbJ81 <8a)

The sidelobe-backlobe transition line for the case G >Gb is

G -G +A

Gs(8) = Gm + A-8 m (_< 8 b)

and for the case G <Gb is
G -G +A

s sm 8
G s(8 2G s_G m+A+a- ma :

The proposed model gives special consideration to the patterns of

linear beam arrays, i.e., Yagi-Uda arrays and log-periodic antennas. Since

the radiating elements are dipoles there is minimal radiation off the ends of

the elements. If the array is horizontally polarized, the elevation profile

is a three-level model. The azimuth profile, however is two-level consisting

of only the mainbeam gain and backlobe gain. Similarly, if the array is

vertically polarized, the azimuth profile is three-level and the elevation

profile is two-level.

For some of the medium-gain antenna models the pattern degenerates

into either an isotropic or dipole pattern at out-of-band frequencies. The

second pattern must be computed and compared to the primary pattern. The

resultant gain is determined from the larger of the two patterns at the Fiven

(0,0) direction.

High-gain Pattern Algorithm for F

p

The proposed directive-gain pattern model for high-gain antennas

is identical to the general three-level model described for medium-gain

antennas. The only exception is that the vertex offset for high-gain antennas

is A "17 dB.

2-198



Summary of Antenna Types

The various types of antennas which may be specified for the gain

model are presented in Table 2-11. The third column defines the qualifying

conditions of some of the antenna types. Columns four and five reference the

specific algorithms for F and F applicable to each type. The other two gainz p
terms F L and F d apply to all antenna types.
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Table 2-11. Summary of Antenna Types and Applicable

Model Algorithms for F and F .

No. Antenna Type Qualifying F F
Condition z p

1 Monopole Resonant, no Res. Dip.

Dipole matching circuit Dip

Sleeve Dipole
Discone
Slot Matched Mat. Dip

2 Folded Dipole Mat. Dip Dip

Q=1

3 Loop No tuning Circuit Res. Dip Dip +
Tuning Circuit Mat. Dip. Isotropic

4 Corner Reflector Resonant Res. Dip. MG + Dip.
Matched Mat. Dip

5 Yagi-Uda Standard Dipole Feed Res. Dip

Folded Dipole Feed Mat. Dip. MG + Dip

Q=l

6 Log-periodic Mat. Dip MG
Q=l

7 Helical Mat. DipQ=IMG + Dip.
_________________ Q=l

8 Spiral Log-planer Mat. Dip. MG
Conical Q-1 Dip.+Isotropic

9 Horn Horn MG

10 Parabolic Dipole or Slot Feed Res. Dip.
Reflector Log-periodic Feed Mat. Dip. HG

Q-l
Horn Feed Horn

11 Phased Array Mat. Dip. HG

12 Traveling Wave 0 MG
Rhombic

Abbreviations: Res. Dip. - resonant dipole MG = medium gain
Mat. Dip. = matched dipole HG - high gain
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3.0 NON-AVERAGE POWER SENSITIVE RECEPTOR MODELING

A detailed discussion of the waveform paraneters total energy,

peak current (and voltage) and rise time is given below. The discussion is in

terms of EMI nargins for each of these parameters that preserve the important

features of the average power margin presently used in IEKCAP. In particular

all margins are in terms of readily measurable quantities, such as power

spectral density calculated at the receptor's input; applicable to both

stochastic and deterministic waveforms; and adhere to a "worst case" philosophy.

These margins are in terms of quantities that utilize both existing IEMCAP

input data and additional input data that is realistic and easily obtainable

on a given system.

In the following subsections example EMI margins are developed.

The discussions consider total energy, peak waveform, and rise time margins.

They are presented as candidates for possible inclusion within IEMCAP. They

are discussed in terms of the general receptor model shown in Figure 3-1.

Although this model explicitly considers-.current waveforms the extension to

voltage waveforms is straightforward and, algorithms applicable to voltage

waveforms can ue developed.

Table 3-1 contains a listing of parameters and their corresponding

definition used in this section.

3.1 Total Energy - Deterministic Waveform

The total energy of a periodic waveform is infinite. Thus such a

waveform will always cause interference to an energy sensitive receptor.I However, in practice this interference can not occur unless the average power

exceeds the average rate of energy dissipation (e.g., heat loss due to

environmental cooling). Thus for periodic waveforms a total energy EMI

criteria should actually be an appropriate power EMI criteria. The present

IEMCAP average power EMI margins are directly applicable for this case.
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Figure 3-1. General Receptor Model
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Table 3-1 Definition of Variables

Pd - average power at input to detector (watts)

P = average power at input to receptor (watts)r

Ed = total energy at input to detector (watt-sec)

id(t) = detector input current (amp)

i (t) = receptor input current (amp)
i = peak value of i (t) (amp)

r r
I d(t) = Fourier transform of id(t) (finite energy) (amps/Hz)

PhasorAas defined by id(t) 2.Re(IdMej~t) (amps)
(sinusoid)

It = Fourier transform of r(t) (finite energy) (amps/Hz)
,,as as defined by r (t) = 2 Re(I rfeJt (amps)

(sinusoid)

Ir(f) = level of I (f) which induces the interference threshold(amps)
level at [he detector

K = detector interference threshold power level (watts)

K = detector interference threshold energy level (watts-sec)

K = detector interference threshold peak current level (amps)

K = detector interference threshold bandwidth (Hz)

G r(f) = spectral power density at receptor input (watts/Hz)

(Note: G r(f) is defined for negative f.)

B r(f) = receptor input-to-detector linear current/Voltage transfer function(Dimensionless)

2
IBr(f)I receptor input-to-detector energy transfer function

ArMf) = time interval assigned to an energy sensitive (sec)

receptor (A (f) defines Il5(f) I according to KE=2Ar (f)jBr(f) 2 1I(f)12.)

A = duration of interference on receptor (sec)
2

= variance of detector input waveform (watts)Ifb
r 2 variance of receptor input waveform 2 Grfdf (watts)

= fraction of time that a stochastic waveform peak at detector
input must exceed K to trigger interference (dimensions)

f p = frequency for which B r(f) is maximum (Hz)

fo = center frequency of a narrowband Gaussian process (Hz)

f a,f lower, upper frequencies defining common frequency band betweeninterference and receptor (Hz)

s = amplitude of the sinusoid in a narrowband (volts or amps)
Gaussian - plus - sinusoid process

T = pulse width of a pulse inteering waveform (sec)

= 3-dB point bandwidth of B r(f) (Hz)
r

Br  = receptor input waveform bandwidth which induces the interference
threshold bandwidth at the detector (Hz)

$r  = portion of the receptor input waveform bandwidth within the passband
of B(f) (Hz)

14W = modified Bessel function of zero order (Dimensionless)
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I

For aperiodic waveforms, the total energy is defined as=f t2f
E = (t) dt

ti

where (tl,t 2 ) is the time interval of the waveform and it is understood that

the reference of "l ohm" is used. If f(t) satisfies the condition

ff2 (t) dt <

it is said to have finite energy and is called an energy signal.

Recognizing that a nonperiodic function may be represented by the

Fourier transform pair, we have

f(t) = IF(f)ejut df

and

F(f) = f(t)e - jwt dt.

Using the transform pair and the above relationship we can form the following

rf2(t) dt = f(t) [ F(f)eJWtdf] dt

and by inversion of the order of integration, we have

f f2(t) dt = f'F(f)[ ff(t)eJWtdt] df

IF(f) F(-f) df.

Note that

F(f)F(-f) = JF(f) l 2 .

Then L2 12
, f2(t) dt = F(f) df. (3.1)

This result states that the t.jtal energy in a given nonperiodic time function

is simply the area of the IF(f) 12 curve. The term IF(f) 12 is called the

energy-density function and expresses the energy of f(t) as a function of

frequency. Thus, JF(f) 12 has the units of watt-sec/Hz.
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As an example, consider a signal having an arbitrary energy

spectrum passed through an ideal bandpass filter with a narrow passband

centered at frequency fl" Assume the energy transfer function of the filter

as unity for components lying in the filter passband and zero for other

components (Figure 3-2).

The total energy af the output is

E = r0 V (f)l2 df

= 2 IVi(f) 2 df.

1-2
For a sufficiently narrow filter bandpass (narrow enough so that the input

spectrum is essentially constant over the band), the output can be approximated

as

WIVi(f)I 2

Solving for IVi(fl)1 2 gives

E

IVi(fl)1
2  o

From this expression it is evident that IVi(f 1)1
2 can be interpreted as the

energy per unit bandwidth.

1VO(fI'

0 f

Figure 3-2 Measurement of energy spectrum
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To determine the energy spectrum of an aperiodic function consider

the rectangular pulse shown below.

-"/2 0 r/2 "-

Rectanul pulse.

This pulse can be expressed analytically as

P~t -T <~T
PT(t) = 1 1 <t <T

=1 2 <2

= 0 otherwise.

The Fourier transform is obtained from

P (W) = C P(t)E- Jt dt

T/2 -judt T/2

[T/ 2  
-iw -T/2

S+jwT/2 _-jT/2

ju

Converting the exponentials to the equivalent trigonometric function leads to

PI(w) = Ts inT/2
sT/2

The energy spectrum of the pulse signal, PT(t), is

I2

IPi;(W)12 - T 2(sinwT/2).
, \wT/2 j '

Changing from w to f = w/2w and converting to one-sided spectrum gives the

energy spectrum as

~2 2/ s inlrTf\ 2 2 2
IPT(f) 2T ) = 2T sinc (fT) f>O

S=0 f<0
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The energy spectrum IPT(f)12, of the rectangular pulse is shown below

0 1/t f-

Energy spectrum of rectangular pulse.

It is seen that the energy is concentrated in the low-frequency portion of the

spectrum. The extent of this concentration can be found by computing the

energy in the first loop (that is, for Ilfl</T) and comparing this to the

total energy. The ratio, found by graphical integration, is 0.902. Thus,

90.2 percent of the energy in a rectangular pulse is contained in the band of

frequencies below a frequency equal to the reciprocal of the pulse length. As a

useful rule of thumb, it is often assumed that a pulse transmission system

having a bandwidth equal to the reciprocal of the pulse width will perform

satisfactorily. Actually, if high-fidelity reproduction of the pulse shape

is required, a much greater bandwidth will be necessary. However, it can be

seen that a system with this bandwidth will transmit most of the pulse energy.

Using equation (3 -1)4See Figure 3-1), the total energy at the in;ut

to the detector (on a 1-ohm basis) is given by

Ed = 'Ild(f)I2 df (watt-sec)

where Id M is the Fourier transform (one-sided) of the detector input wave-

form id(t).

For a simple system with system function B r(f), the output

(detector input) and input are related by

I(f ) - B(f) I (f)

d r r

where I r(f) is the Fourier transform of the receptor input waveform i r(t).

Thus, the energy spectrum of the output is

I d~f) 2  I Id(f ) Id*(f)

= [Br f ] (f)][B*(f) I(f)]

= jB(f) 2  2r(f) 2
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......... ,..m l _ : .. . . . . . . .

and E B )2 'l(f)'2df.

d r~ 'r'

In keeping with the IEMCAP definition of susceptibility and standard response

an energy susceptibility is determined by the following. The energy suscepti-

bility function may be represented as shown

E51 /(

r

ff

As in the case of the power susceptibility curve, the energy susceptibility

curve is a minimum at that frequency where the transfer function (B r(f) is a

maximum. The dector interference threshold energy level K
E can be related to

the receptor input energy for a sinusoidal waveform if a time interval, A (f),
r

is defined for the receptor. Thus, the susceptibility energy is

Es(f) = A (fiIIs(f) 2
r r r

KE

IBr(f)l
2

or K = B r(f) E rf)

where E(f) = the CW energy at frequency f which generates ther 
i

energy equal to the standard response energy level

at the detector input (cooling included).

The total energy EMI margin for a deterministic, finite energy waveform

becomes

Ed fa Ir)2d.

= df.
KE 

1 fb E (f)

r

where (f at f b
) a r e the frequency limits for the energy susceptible devices.

Note that the measurable quantities are transferred 
to the receptor input.
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The energy received at the receptor from an emitter is given by the

area under the received energy density function times the input impedance of the

receptor. The result is

I It(f)I 2 t(f) b ri

where t 2_(f)2 = transmitted energy density watt-sec (I ohm)t Hz

b = bandwidth factor for the emitter (Hz)

t(f) = transmission loss (dimensionlejs)

r ir = input impedance of the ith receptor (ohms)

This assumes I it(f)I 2 is a constant over bandwidth b,

From the discrete equation notes(
6 )

1I t(f)l = (,/-q)
2

q = current spectral level (amps/Hz)

The broadband point energy EMI margin is then given by

ep (V-2q) 2t(f)br ir
epmd(f) = -d ~ E5 (f)

r

Converting to decibels, the broadband point energy EMI margin for an aperiodic

signal becomes

EPMD(f)(dB) = Q(dBkA/MHz)+T(f)(dB)

+B(dBMHz)+ RIR - r(f)

-r (f) (dBuA)
r

where EPMD(f)(dB) = 10 log epmd(f) 12

Q(dBIA/MHz) - 20 log (r q/l
1
0 )

T(f)(dB) 1 10 log t(f)

B(dBMHz) = 10 lo / b)

RIR(dB) = 10 log rir

I.'(f)(dB) . 10 log Es(f).

r r
To determine the broadband integrated energy EMI margin, the

derivation parallels that of the broadband integrated margin of the IEMCAP.

Using Dr. Weiner's notation,
(6 ) the derivation of the broadband integrated

margin is presented below.

3-9



The point energy margins are converted to a margin density

empd (f)

b

Next, convert to a log-log scale and plot [ep d(f)/b] vs. log f

and connect straight lines between the data points as shown below.

logl0 [Opmd (f)]

b

log f log f log 2 log f logf logf 5  logtb log t

This curve represents the broadband margin density when plotted on a log-log

scale. The broadband integrated EMI margin is obtained by findine the area

under the curve.

To illustrate how this is done, focus attention on the r-th and

(r+l)-st sample frequency as shown below.

log 1 0 ~

10 b

log, f r log f +1 logf
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The straight line connecting the points is of the form

epmdf (M--)+C

= a l f-
log 10  b log10 (r + C.r

When r f= , lOglo (f/) - logl o (l) = 0 and

C = log efrd (f r)
C = logla [ b r]

Thus, C is the value of

lg0 ePmd~f)
1 b

where f = f and a is the slope of the straight line. Letting f = fr+l in

the equation of the straight line, we have

epmd (fr+l) f . epmd ( fr)
lgOe [ -I = a Lce]( l°lo ' (-b

l 0ob 1 0 f r br

3olving for the slope, yields

l~l[ ermd (fr+l) -ePmd (fr)lo I,_ ]-loglo ( - ] I

r+l

loglo (-F-)
r

For simplicity, letI = epmd( fr)

b b
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The slope is then given by

l g O 1 0 E ( r l b / g r h b
a/ =
log 0( fr lr )

Also, let

gf)ePmd (f)

b

The straight line can now be written as

logo[b(f] a loglo ----) + loglOgrb 1.

Rearranging terms, we have

loglo [ = a log1 o (L) = log 0 ,,,)a
1 r b 10fr 10 fr

It follows that

gb(f) 'f a
9 Tj

rb r

and g(f) = grbf a

This is the equation for the approximation to the margin denaity when the

straight line on a log-log scale is converted to the corresponding curve

on a linear scale. The area under the margin density in the frequency

interval (fr' fr+l ) is given by

fr+l fr+l

g2 f gb(f)d = grb()d
r r

grb 1 ,.~a f r+1
(f ) a +1I

r 
r
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£rb 1 a+1 a+1(ra a + 1 [(f ~ l  r al

fr l r+

[ ( +1 _f
a + (fr)a r

r

To obtain the broadband integrated EMI margin over the entire frequency

range of interest, it is necessary to sum the contributions from the

area under each consecutive pair of sample frequencies. This is

indicated by the #ollowing

n
C

r=l

where n is the total number of sample frequencies due to the emitter

and receptor in the frequency interval (f a,f ).

From the above, the conclusion is that the same technique used

in IEMCAP to obtain integrated margins is equally applicable to the total

energy (aperiodic) integrated margin calculation.

3.2 Total Energy - Stochastic Waveform

As with periodic deterministic waveforms, a stationary stochastic

waveform is of infinite duration and, thus has infinite energy. Therefore,

the present IEMCAP average power EMI margin is then appropriate in order to

predict whether dissipation (e.g., heat loss due to environmental cooling)

exceeds energy buildup. The latter is necessary for interference to occur.

There may be instances where certain emitters may be considered

sources of "Switched" stochastic waveforms in that an otherwise stationary

consider a rotating reflector antenna that is emitting narrowband Gaussian

noise within a receptor bandwidth. The total energy at the detector of

the receptor can be determined from

3-13
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Ed = APd

where A is the duration of interference on the receptor and where Pd is given by

Pd = r0 Gr(f)IBr(f)l 2df.

As in the deterministic case, the detector interference threshold energy level is

KE = IBr(f)1 2 Es(f).

It follows that the total energy EMI margin for "switched" stochastic waveforms is

Ed = Afb Gf(f) df

KE  f ES(f)a r

where (fa' f b) in the frequency limits for the energy susceptible device.

From the "Discrete Equation Notes," we can relate the above energy

margin to the power spectral density function in the IEMCAP. A value of broad-

band emitter power spectral density is assigned to each sample frequency. The

broadband power received at a receptor from an emitter is given by the area

under the received power spectral density times the input impedance of the

receptor. This may be defined as

Gr (f)(bw)r ir
where G r(f) = G t(f) t(f)

G (f) = emitter power density at frequency f (watts/Hz)
t

(bw) = FIM bandwidth (Hz)

and t(f) and rir are as defined previously.

The broadband energy point EMI margin (switched stochastic) is

then given by (A)Gr (f)(bw)rir

eprs(f) iES(f)
r

(A)Gt ft(f)(bw)

E (f)
ErM

From IEMCAP we have
2

Gt (f) = q (bw).

Then epms(f) = (A)q (bw) t(f)
ES(f)

r
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Converting to decibels, the broadband point energy EMI margin for the switched

stationary signal becomes

EMPs(f)(dB - A(dBsec)+Q(dBA/MHz)+BW(dbMHz)+T(f) (dB)

- Ar(f)dBsec)-Ir(f)(dBliA)

where EMP (f)(dB) = 10 log epms(f)

Q (dBsec) = 10 log A
Q(dBpA(MHz) = 20 log t -q--2

=i0- Ilo

BW(dBMH2) = 2
lo -

T(F)(dB) = 10 log t(f)

A r(f)(dBsec) = 10 log Ar(f)

Y(f)(dBpiA) = 20 log r0/

The integrated energy EMI margin for the switched stationary case is

determined in the same manner as that presented in the deterministic total

energy case.

3.3 Peak Current/Voltage - Deterministic Waveform

Some receptors (e.g., many digital devices) are sensitive to the

peak value of a waveform (e.g., voltage or current). An upper bound to this

peak can be given in terms of amplitude spectral density frequency domain data.

This bound can be used to define a conservative estimate of a peak current

(or voltage) EMI margin for deterministic waveforms in terms of receptor input

quantities. The remainder of this section pertains to peak current but the

peak voltage deviation can be performed in an analogous manner. Consider the

detector current given byid(t) = IIf BrfMeJt df.

Note that I (f) is a superposition of impulses for periodic (infinite-duration)

waveforms and a continuous function for finite-energy (finite-duration)

waveforms.

It follows that (1 )

Iid(t) I< jIf) HB,(f) df.
max J
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Also, the detector interference threshold peak current level K is given in

terms of a CW receptor input level I I(f)j by

K = IBr m) I's(f)I.

An interference margin may be defined by

!!-I< b -r- df
K max If i(f) l

Where (f a' f b) is the frequency limit for the peak current susceptible device.

For IEMCAP a peak current EMI margin for deterministics waveforms (compatible

with "worst case" philosophy) is defined by

f - df.

a I'MfI

Again, to conform with the IEMCAP definition of susceptibility and

standard respone a peak current susceptibility will be defined. The peak

current suscepti,,ility function may be represented as shown below.

5
I (f)

f f-
0

As is the case of the power susceptibility curve, the peak current susceptibility

curve is a minimum at that frequency where the transfer function B (f) is a
r

maximum. The detector interference threshold peak current level K can be

related to the receptor input peak current for a sinusoidal waveform by

K = IB(f)II(f)

where IS(f) = the peak CW input signal at frequency f needed to produce
r

the standard response peak current level at the detector

input.
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To get an understanding of how "worst case" the above equation is,

consider a rectangular pulse train as shown in Figure (3-3)2) with parameters

as defined in Figure (3-4).( 3)Using this example, we will demonstrate how

IEMCAP would make use of the above equation. Assume jII(f)I = I and determine

From Figure (3-5) 4 ) the power density according to IEMCAP is:

P BB f)= 2 A 2T2fB

2x(.) 2x(1.25xlO )x4xlO
3

= 1.25 Owatts 0<f<f
Hz -- m

= 1.25X10-6 (fin) f~

1 1
Bandwidth = .. 4 kHz

T 2xl.25x10-4

1 1
f = 1 . - 2.55 kHzm TrT Trxl. 25xlO -4

The Fourier Series representation for the rectangular pulse train can be

determined from

i(t) E ct En ot

n=-

where tl+ T

= Cft i(t)E 0  dSn T ti

T = period of pulse train.

The coefficients are

[_;;W exp IL_-
T

where w 21T/T.

0IThus, the complete Fourier series expression for i(t) now becomes

or

at 2a sinnirt/Tn 2/T -

i(t) cIT + Cos 2(t-T/a). (3.2)
T T nrTT/T T
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V(t) or

z -j

T~~~ (__ _ _ Sec)

Required Input Parameters:

a = volts/amps into designated load, R L

T = pulse width (seconds)

rb = bit rate (r )(Hertz)
ff= 30 Hz

fh= 3.18/T Hz

Frequency Table (Hz):

fk9-i 'hp 2 ~h , 35f ho . 5 f h'9 ~h fh (1 + l0-)

Figure 3-3 Rectangular Pulse Train

(RECTPL)
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RCEPTz SIGNALP0,30,4000,RECT PIUE3P1.25E-4)P .1,AMPS,4E3
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FQEQ:3O,0F6, 1,90
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S0URCFmC ASE : ,Mu S PCMlLS PC
RCEPT- CASE 0,MILSPCMILSOC
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Figure 3-4 Mini-System B2 Input Deck

3-19



Rectangular Pulse PBO (f 2A= rf . .< r fM Watts/Hz

PBB~ /f \2 ~
~B~1 

2A 2r2fB

where

bandwidth-
2r

fB = bit rate

A - peak current/voltage into 1 ohm

ff

T =pulse width

ISO 2A 27
2f

POSM - 2A~r T (f~m a

0 f

Figure 3-5. Rectangular
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When a current i(t) flows through a one ohm resistor, the powered dissipated is

P <i2(t)>

T/2

where <i2 (t)> = 1 iT 2 (t) dt

for a periodic signal.

Hence, the power in a rectangular pulse train is given by

n 2a2T2  (sinnfrr/T n>
T) lTn/T 2 nT

To convert to a continuous spectrum, multiply P(n) by T and we have

2a 2 T 2 /sinnrT/T 2
PBB (n) = T (snnT/T

where P BB(n) is the envelope of P(n/E).

Using the values for the above example: sinIrxnxl.25xlO'4 2

P n 2x( .1) 2x(.25xlO -4) 2  .25x10-3

BB .25x103  irx.25x1&4 xn/

- .25x10
- 3

i ~ , , i i ( n9 0 n 21"25x10-6 r-

A plot of PBB(n) is shown in Figure (3-6). Figure (3-6) also shows a plot of

the IEMCAP model as determined from Figure (3-5) and the required frequency range

as defined by Figure (3-3) and Figure (3-4). The required frequency range is a

user input option.

To convert to a continuous current spectra, multiply i(t) by T to
obtain 7snn

(n (amp,)= 2aT( T
T

and with the above parameters

ie (n) - 2x.lxl.25x10
4 ( s in 9O n \

- 25xl0:Os(590n:_ m .
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1.4

1.2

.8

on

-4

kx

Required Frequency Range
30 HzFrom Figure 3-3.

Fgr3--6 Plot of IEMCAP and Model P3
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The representation for ie(n) is shown in Figure (3-7). From Figure (3-5), the

IEMCAP model may be converted to current spectra by

.( amps %B PBB(f)
r Hz B

/2xl.25xlO-6

V 4x,0
3

= 25x10
- 6 amps

Hz

= 25xi0- ( m f>f

I (f) is shown in Figure (3-7) for the above example. Figure (3-7) also showsr

the MIL-STD-461A signal port spectra.

Using Figure 3-7, the effects of computing the peak current margin

from equation (3-2) may be determined. Recognizing that i e(n) is of the form

sinx
x

The integral (normalized to the peak value)

-dSix W s ._.._- ndx

jo (5)
may be found in tabulated form in many different texts.

Thus, the peak is defined by

Pe = Si(x) (3.3)

where ipe = peak current associated with ie (n)

The integral using the IEMCAP model is given by

i XM(l+ln ?S- ) (3.4)
PEMCAP m

where xM -value of x corresponding to fm of the model.
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20

15

10

5/

G~

............ .

d---30 1Fz- 2 .44 14z Required *-Nonrequired Frequency Range. 01
Freq encygR

Figure 3-7 Plot of i e(n). IEMCAP Model, Ii Iand MIL-STD-461A
Signal Port Spectra
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The normalized models are shown in Figure (3-8) and the peak current calculation

for equation (3-3) and (3-4) for various required frequency ranges are tabulated

in Table 3-2. In Table 3-2, the column showing the ratio of the peak current

(i /i ) represents the factor by which the IEMCAP model over predicts
PIEMCAP e

the actual peak current for the above example. Thus, as shown in the table,

the actual peak current for a rectangular pulse train may be over predicted by

as much as a factor of two using the IEMCAP model.

In terms of the r.m.s. currents, (normalized to one microamp) the

narrowband point EMI margin from IEMCAP is

MN ft) ffi 2

1 /10)

where tij(fg) power transfer function of coupling path between j--th

emitter port and i-th receptor port

Is = the receptor r.m.s. current equivalent to the power

susceptibility level

f = k-th sample frequency.
Converting to pea, we have 62t

N 5I/l0- 6 ) ti (f Z)Tapp(f) =

(I/10-6)2
r

where Is  = peak receptor current equivalent to the peak
r

susceptibility level
and converting to dB,

.PP ( f ) (d) i j ( fp(dB) +I (dBVA) -s (dBlia)

where (fg) 20 log N

T ij(ft) I0 log ti (ft)

l(dBia)- 20 log -

10-6"
i
s

I (dBlja)- 20 log r

10
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1.0

0.8

0.6

0.2

Figure 3-8. Norrialized i e(n), IRMCAP, Ii e and MIL-STD-461
Signal Port Spectra
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Required Frequency Pe PEMCAP PIEMCAP

Range (kHz) X (amp/Hz) (amp/Hz) i P

4 1.57 1.36 1.45 1.07

8 3.14 1.85 2.14 1.17

12 4.71 1.61 2.55 1-.58

16 6.28 1.42 2.84 2.00

20 7.85 1.56 3.06 1.96

24 9.42 1.67 3.24 1.94

28 11.0 1.58 3.40 2.15

Table 3-2 Comparison of Peak Current Calculations
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The broadband emitter current spectral density is frequency

quantized by the computer program. A value of broadband emitter current

spectral density is assigned to each frequency. This value is the maximum

value assumed by the current spectral density within the corresponding fre-

quency interval associated with the frequency. To evaluate the broadband

current point EMI margin at each sample frequency, we require the transfer

function of the coupling path between an emitter and a receptor and a band-

width factor, b. As defined for IEMCAP, the bandwidth factor, b, is assigned

to each sample frequency. It is defined according to Table 3-3 of the

User's Manual (Vol. II. p. 40) and is repeated below.

Table 3-3 Bandwidth Factor

EMITTER RECEPTOR BANDWIDTH

Required Required Min(bemit ,brec

Required Non-required Min(bemit' bstd)

Non-required Required b
rec

Non-required Non-required b
std

The standard bandwidth (bSTD) is associated with the EMC test instrument and

is defined on page 30 of the IEMCAP User Manual. The broadband peak current

spectral level margin is determined by

id( max < Ifa r fi df -r flb
k - : f - [()

where it is assumed that Itr(f) and IIs(f)l are constant over b. The

received peak current is

IIr(f)I - I It(f)I Vt7(f)
where lit (f)I peak current spectral level at the emitter.

Thus Ilr(f)lb it(f) t(f) b

rI<~ rz(f)l

and, the peak current broadband point margin for deterministic signals is

defined by
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Piecewise constant j-th emitter broadband power spectral
density (watts/Hz)

W B(f A)
* i

0

Piecewise constant power transfer function of coupling
path between j-th emitter and i-th receptor

0 f

Piecewise constant i-th receptor susceptibility curve (watts)

I f
I g

~b
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B f )I~I / 7  b

From the IEMCAP notation the current spectral level is defined by

q = (bw)

where ip f peak current.

At the emitter

ip f I t(f)(bw)

and
q = t (f) I /

It follows that

= t l = /2 .
Therefore, the peak current broadband point margin may be expressed as

q t f- b
B b impPf = I~~

Normalizing q by lIA/MHz = 10-12 A/Hz

fB by 1 MHz = 106 Hz

b by 1 MHz = 10 6 Hz
-6I by .1A = 10 A,

we have 2 fB b

-12 6 ij) (fd(1) 10-24X106x106
B (f ~ 10- 1010 1 xO l

'Pp~L s 2 (10-6 )2Br

(1) (10))

Converting to decibels, the broadband point EMI margin for a periodic signal

becomes
MpP(f) (dB) = Q(dBPA/MHz + FB (dBMlHz)

+ Tij (f9)(dB) + B(dB MHz) - Is (dBpA)

where M~p(f£) f 10 log mBF(f£)

Q(dBpa/MHz) = 20 logs( 1012

Tij(f )dB = 10 log tij(fi)

B(dBMHz) - 20 logH]l)

I (dBjiA) - 20 6o )s O-6)

3-30

• . f



3.4 Peak Current - Stochastic Waveform

The peak value of a stochastic waveform cannot be given precisely.

Therefore, the peak waveform susceptibility of a receptor must include, along

with K, an estimate of the fraction of time that a stochastic waveform peak at

the detector input must exceed K in order for interference to occur. This

estimate is denoted a.

Let i (t) be a stationary stochastic process which is adequatelyr!
described by first and second order statistics (means and autocorrelations).
Then the same holds for id(t). For simplicity also assume Jr(t) has zero mean.

Then id(t) also has zero mean. The variance of id(t) is given by

02 G(f) IBr(f)1 2df.

Now, from Chebyshev's inequality( 1) the probability of id(t) exceeding K is

bound by 2

p(lid(t)I>K) <-

Define the susceptibility margin as

P(I id(t)j>k)

where a is the probability (Iid(t)I>K) which should not be exceeded. Then

from above

Sp(jtd (t) I >K) >O j/K 2

a_____ a/

Therefore, an indication that a stochastic waveform is compatible, i.e. does

not cause interference, is given by

Gi/K2
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We now consider the computation at the input to the receptor.

The variance of i r(t) is given by

ra O Gr(f)df .Or  r

2

Then, using the following approximation for ad , we have

0 d2< IBr(fp)I2 Fo Gr(f) df

where f is the frequency for which B (f) is maximum.
p r

Thus,
2 2 2

d < IBr(fp)I ar

Dividing the inequality by K , we have

ad
2  B r(fp ) o 2

K2 K2K- K2

where K = IB (f )l ji(f )l
r p r p

and K2 = I Br(fp)1 2II(fp)1 2 .

Substituting K into the above equation, it follows that

Or 2

I ls(f ) 2

is an upper bound to
ad 2

K 2

Therefore, the requirement for compatibility is the following

ar2
<1

rp

and a peak current EMI margin for stationary stochastic processes is given by

Br 2

rP
m p(f) - _____

The current spectral level from IEMCAP for a stochastic waveform

transmitted by the J-th emitter is given by

q [PT/ (bw) 11/2
q (bw)r I

This expression is only for Gaussian noise.
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Following the identical steps outlined above for the peak current deterministic

interference margin, the broadband point EMI margin for a stochastic signal can

be determined. From IEMCAP, the variance of i (t) is
r

r2  ffb (f) tij(f)df

a

where r 2is the variance due to frequency components in the interval (fatfb

w 1(f) is the power spectral density and t ij(f) is the power transfer function

of the coupling path between the j-th emitter port and the i-th receptor port.

It follows that

r 2 = 0(f)t'jf) b

2

= q (bw) t ij(f)b

PT/(bw) 2
where w I(f) r Je  q (bw).

Thus, pf) M q 2 (bw)t i(f)b

'l '(f )I 2
r p

which is the broadband point EMI margin for a stochastic signal. Converting

to decibels, the broadband point EMI margin for a stochastic signal becomes.

4p(fz)(dB) = Q(dBliA/MHz) + BW(dBMHZ)

+ Ti (f )(dB) + B(dBMHz) -I(dBpA)- c(dB)

where
BW(dBM z) = 10 log(-bw

10

a(dB) = 10 iog(a)

and bw = field intensity meter (FIM) bandwidth,
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To determine the broadband integrated peak EMI margin, the

derivation parallels that of the broadband integrated margin of the IEMCAP.
(6)

Using Dr. Weiner's notation, the derivation of the broadband integrated peak

margin is presented below.

The point peak margins are converted to a margin density

B
mp(f)PP

b

Next, convert to a log-log scale and plot mF(f)/b] vs. log f and

connect straight lines between the data points as shown for the energy density

calculation above. Thus, the same technique used in IEMCAP to obtain integrated

margins is used to obtain the peak current integrated margin.

3.5 Peak Current - Normal, Stationary Waveforms(Broadband Gaussian)

A peak current EMI margin applicable to normal, zero-mean,

stationary waveforms is defined by

P[(id(f)>K]
snim =

pc a _x2

od 2- e 
dx

where snim = stationary normal interferenLe margin for peak currentpc

with all the parameters as defined previously. For compatibility

snim < 1.
pc

From the previous derivation
d2 <2rp 12r
d2 <IBr(fp) 22

and ad <B (f )I C

where f is the frequency at which Br (f) is maximum.

It follows that 2

2
-x

1 d dx<

_x2

21B (f )12102
- J Br(fp)r e dx.

The right-hand side of the above inequality is also a suitable susceptibility

margin.
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Making a change of variable of integration.

Let Y r (BCf )

dx
Then dy (B (f )I

r p
Substituting the limits for x, we have

when x = K
Ky B r (f )p

and from K = IB r(f p)I 1I r(fp )

y = (I5 (f )I .

Next when x . r p

y = CO .

Substituting the above into the right-hand side of the inequality, we have
CO ~y 2 B r f p)1 2

21Br(fp) 12at 2

_ e dy(Br~ p

I r (pr rp

Thus, after a change of variable of integration this margin becomes

'2-X

2a
V y 1 r dx.

frT

.II1f )I

Further, let

u --

o~r

r IU .

!! ~~and the upper limitt u . 1

3.a-CO



Then, the above margin becomes

-20 2u2

1___ 20 2 duv'2or

r

2 a
rr

2-- e du

I 1(f )I
/i'for

which becomes eUd ,e fc 2°J -'- /11 r(f )

T20 r

where(7) 2 f 2
erfc(u) 7 e dt

is the complementary error function.

Hence, the peak current EMI margin for a normal zero mean, stationary waveform

is given by

f I S f> '
eric K i/ r "

snim =pc a

To determine the argument for the complementary error function, we have
2= r
r _G(f) df.

For an equivalent point margin

o2
a r G r M d f - r ( f ) b

where b is as defined in Section 3.3 and Gr(f) is constant over the frequency

interval.
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From IEMCAP we have for a Gaussian stochastic process

G r(f) - (q)2(bw)t(f).

2 2(q)2(bw)t(f)b.
Hence, r 2(q

Then, the argument of erfc may be determined by taking the square root of the

above and multiplying by i/$2 to obtain

[2 ((2 qI (fp)lI
Given the above a value for the erfc may be computed and the peak current point

margin for a normal, zero-mean, stationary waveform (snim C) determined. Con-

verting to dB, we have

SNIMpc(dB) = 10 log snimpc.

The integrated EMI margin for a normal, zero-mean, stationary

waveform may be determined by the same method as presented in Section 3.1.

This method requires that the point margins be converted to a margin density

defined by

snlm (f)

b

Then, convert to a log-log scale and plot (snlmpc(f)/b) versus log f and

connect straight lines between the data points.
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3.6 Peak Current - Narrowband Gaussian

A peak current EMI margin applicable to narrowband Gaussian wave-

forms expressed by

i (t) = Xr (t) cos (21f t) + y (t) sin (2 fot)

where x r(t) and y r(t) are stationary, normal, independent zero-mean processes

with identical autocorrelations can be derived in a manner similar to the

derivation for peak current susceptibility margin applicable to normal, zero

mean, stationary waveforms described in Section 3.5. The result is (Rayleigh

statistics(1))
-2

This integral may be evaluated as follows:-x

1 _2r
a rI'5 (ff))I

Then, we nave r r) 2

20r2

nbg P 
0

npc a

As previously determined, (Section 3.5) the exponent is determined by noting

that the received power is

a 2 = 2(q) 2 (bw)t(f)b
r

where all variables are as defined previously.

The ratio of the above (sianal-to-interfernce) at the input is

I1;(fo) 1
2

4 (q) 2(bw)t(f)b
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Given the above, the exponential above may be evaluated and the peak current

point margin for a narrowband Gaussian process determined. Converting to dB,

we have

NBGpc(dB) = 10 log nbg
PC PC-

The integrated EMI margin for a narrowband Gaussian waveform may

be determined by the same method as presented in Section 3.1. This method

requires that the point margins be converted to a margin density defined by

nbg pc(f)

b

Then, convert to a log-log scale and plot (nbg (f)/b) versus log f and connect
PC

straight lines between the data points.

3.7 Peak Current - Narrowband Gaussian Plus Sinusoid

For the case where a sinusoidal signal is also present in the

narrowband Gaussian waveforms, we have

i r(t) = (xr (t)+S)cos(27f0t)+yr (t)sin(27rf 0t)

where a sinusoid of amplitude s has been added to the waveform of Section 3.6.
(l))

The corresponding susceptibility margin becomes (Rician statistics )

-(x
2+s2)

22

2Or2

CL- e O0 O ( f dx.

jrr
II (f o l

where (x) is the modified Bessel function of order zero.

Define z as the signal-to-interference power ratio at the input.

Thus, 2
5

Then the integral above becomes

-x 2-:r

- ,x - dx.
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In general, Jo(y) may be shown to be
2

- 1 + Y-+ .. =

when y << L

Using this approximation, the above integral becomes

20r22
-x -t

2L~

2oI x e J12r
2 ~d

r

FI;(fo)Ix-e dx

for z<.I. This is the Rayleigh density function and the interference margin

may be determined as discussed in Section 3.6.

When z>>l, the modified Bessel function of zero order may be shown to be

e Y

°(21Ty

Under this condition, the integral above 
becomes

(8 )

- (x2+92)

20 2

e A((xx))

1 1r 2 0 r2
r2

Ot 2€s O2

which is observed to be the Gaussian or normal density function. Thus, the

interference margin may be determined as discussed in Section 3.5.
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3.8 Risetime - Bandwidth

If a receptor s susceptibility is a function of the "rise time" of a
waveform, then it will be sensitive to bandwidth. The relationship between
rise time and bandwidth of systems is

TrB k

where
Tr = rise time of receptor

B = bandwidth

and k is a proportionality constant for the receptor. Using this relation-
ship, the susceptibility of a receptor to the rise time of a given waveform
may be determined. Thus, a bandwidth susceptibility margin for both deter-
ministic and stochastic waveforms is given by

r
8s

r

where ar is the portion of the receptor input waveform bandwidth within
the passband of Br(f), and as is the receptor input waveform bandwidth
which induces the interference threshold bandwidth at the detector.

where r is the portion of the receptor input waveform bandwidth within
the passband of Br(f), and is the receptor input waveform bandwidth
which induces the interference threshold bandwidth at the detector.
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4.9 NONLINEAR INTERFERENCE MODELS

This section will provide detailed mathematical derivations of

all the models implemented in NONLIN. Since the basis of these derivations

is the modified nonlinear transfer function, it will be discussed in great

detail in section 4.1, with particular emphasis on its derivation from the

more general Volterra series. After the general form of the nonlinear

approach is developed, it will be used to derive the model used in NONLIN to

describe desensitization. This model will then be used to examine the

limitations and approximations of the nonlinear transfer function approach,

as well as the relationship of this approach to the Volterra analysis. The

remainder of Section 4 will then be devoted to the derivation of the remain-

ing models implemented in NONLIN, with particular emphasis on the assumptions

used to obtain the models in a form suitable for a system level analysis.

4.1 The Modified Nonlinear Transfer Function Approach

4.1.1 The Volterra Series

The theory of functionals and functional expansions was first

proposed by Vito Volterra in 1930 (Volterra, Reference 6). He established a

working definition of a functional by noting that, just as a function oper-

ates on a set of variables to produce a new set of variables, a functional

operates on a set of functions to produce a new set of functions. Using

this definition, Volterra observed that an arbitrary functional could be

expanded in what is now called a Volterra Series, in a manner similar to

the power series expansion of a function. He showed that every homogeneous

functional of degree n, acting on an arbitrary function, x(t), could be

written

b b
Fn[X(t)] " jb "'" akn( ' ¢2, 3" )X(1'(Cn)

a a

da1 d1 2. .d n  (4.1)

where la,b] is the interval appropriate for the problem being considered.
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Observing that 4.1 holds, the Volterra series expansion of any arbitrary

functional, O[x(t)], may be written:

G[x(t) = nE0 Fn[X(t)]

b

= ko+ k x(Od)0( )d

+j k fls 2 )X(Xd ld 2 +... -(4.2)

The first important application of this Volterra series expansion to the

analysis of nonlinear circuits was by (Wiener Reference 7) in 1942, who

related the output of a system, y(t), to the input, x(t), by a Volterra

series of the form

y(t) f nI Yn(t) (4.3)

where the Y n are given by

yl(t) = fh(T) x(t-T) dT (4.4)

(t) = 7 -fi(T19T )X(t-T )X(t-T )dT dT2  (4.5)

and Yn(t) = tI XtT..XtTn 1 dTn (46

The simplification of equation 4.3 will provide the theoretical basis for our

discussion of nonlinear interference effects.

In analyzing this equation, Fourier transforms will be performed

on various terms in the expansion, resulting in time and frequency domain

representations of the input/output relationship.

Begin by noting that h n (T..*  n ) has been defined (Signatron,

Reference 8) as the nonlinear impulse response of order n, and that the

Fourier transform of h
n

expf-J 21(fl P..fnTn) }dTl ... dTn (4.7)
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is defined as the nonlinear transfer function of order n. It is apparent

that the inverse Fourier transform

h n(T''Tn)- L ... LHn (f l''' f n

exp{j2r(f T1+..+f n n)}df .. dfn  (4.8)

will allow expression of equation 4:.3 in terms of these H (f). Thereforie, if
n

equation 4.8 is substituted into equation 4.3, and the convolutions over T

are performed, y(t) is found to be

exp{j2R(fl+f2+..+fn)t}dfl.. dfn  (4.9)

The convolutions over Tk with e. 2 vfkrk have produced X[f ], which is Fourier

transform of the input signal and also the frequency domain input signal

spectrum.

By noting that the frequency spectrum of y(t), Y(f), is given by

the Fourier transform of y(t),

Y(f) = n f (fl,,fn)X(fl) 'Xn(f)

exp{j2w(f 1 +..+f n)t}df1 ...dfnexp{-j2nft}dt (4.10)

equation 4.3 may also be expressed in terms of the output frequency spectrum

.oexp{-j2(f-f1-f2-..fn )tdtdfl...dfn (4.A)

Since the unit impulse is defined by the Fourier transform relation

6(f-f 1-f2 ...-fn) F'exp{-j2n(f-fl...-fn)t}dt (4.12)
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equation 4.11 may also be expressed in terms of the input/output frequency

domain spectral relationships.

Y(f) = E . n (f..fn)Xl(fl) ... Xn(fn
= n nl

6(f-fI'' .-fn)df -'dfn (4.13)

Equations 4.3, 4.9 and 4.13 are the relationships which will be used to

develop models which describe system degradation due to equipment nonlineari-

ties. They are the time and frequency domain Volterra series which relate

system output to various order inputs.

Earlier in this section, functional series expansions were

defined in a way which was analagous to the definition of a power series.

To illustrate the application of the Volterra series to a specific problem,

the exact relationship between the Volterra and power series will now be

derived. It will, in fact, be shown that the power series, representing a

nonlinear system with no memory, is a special case of the more general

Volterra analysis.

A nonlinear system with no memory will have nonlinear impulse

responses and transfer functions given by [Signatron, Reference 8]

hn(,T 2 ...T) a6(Tl) (T2)...6(n) (4.14)

H n(fl f 2 ...f) A , a constant (4.15)

By equation 4.8, note that a must be identically equal to A for all n.
nn

Equation 4.3 may thus be rewritten by substituting equation 4.14 for h

y(t) n . 0 . a(Tl)6 (T2 ) ...6(T

x(t-T1)X(t-2) ...x(t-Tn)dT ...dr (4.16)

Using the sampling property of the delta function, 6[ ], to evaluate 4.16

yields the result

y(t) = alx 1(t)+a 2x:
2 (t)+... (4.17)

xna x (t)
n1l n 4-4



Similarly, substituting equation 4.15 into equation 4.9 yields

y~)=n L f. a nX(fl)XMf 2 )... X(fn)

exp{j2ir(fI+f 2+.+fn)tldf,...df (4.18)
n

which by definition of multidimensional Fourier Transforms reduces to

y(t) x axn(t) (4.19)

Equations 4.17 dnd 4.19 establish that the Volterra series does reduce to

the power series for a zero memory system, as claimed, which helps explain

why the classical power series yields accurate results in cases with zero

memory nonlinearities.

A similar analysis of equations 4.3, 4.9 and 4.13 for sinusoidal

inputs will be used in the following sections to develop the models imple-

mented in NONLIN to describe system level nonlinear effects.

4.1.2 The Nonlinear Transfer Function Approach

At this point in the discussion, it becomes useful to introduce

several assumptions and a change in notation which will facilitate the

mathematical manipulations used to simplify equation 4.3.

The first simplification is that the system in question is only

"mildly" nonlinear. "Mildly" nonlinear is, of course, an arbitrarily

defined concept, but will be utilized here to describe a nonlinear system

which is characterized by only the. first few terms of equation 4.3. The

number of terms which must be retained is determined by the rate of con-

vergence of equation 4.3. Thus, if only terms of degree n<N are retained,

input signals will be limited in amplitude to those which allow convergence

of equation 4.3 within the first N terms.

The second assumption made in this section is that inputs to the

system of interest are sinusoidal. This appears to be a severe -istriction,

placing limitations on the applicability of equation 4.3 to phenomena which

are not sinusoidal [e.g., Gaussian noise, etc.).
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It has been shown, however, that equation 4.3 is valid for completely

arbitrary inputs (Spina reference 4) and the equations derived using sinu-

soidal inputs have also been validated for arbitrary mild nonlinearities.

This restriction is thus a legitimate approximation, which is valid for

the types of inputs to be discussed in the sections which follow, and leads

to the equations from which the models in NONLIN are derived.

Using these two assumptions, evaluation of equation 4.3 is

straightforward, but cumbersome. Therefore, as the equation is simplified,

the notational changes mentioned previously will be introduced to simplify

bookkeeping and computational chores.

The first step in the derivation of the nonlinear transfer

function series is to limit system nonlinearities so that terms of degree

n>N contribute negligibly to the response, y(t). Equation 4.3 is thus

writtea

N

y(t) - Yl(t)+y 2 (t)+..+YN(t) = nlYn(t) (4.20)

This situation, where the system is represented as N independent blocks,

each having the common input x(t), is depicted pictorially in Figure 4-1.

The nonlinear transfer function approach is thus seen to repre-

sent the total response of a nonlinear circuit as the sum of N individual

responses. The first order response is characterized by the first order

linear transfer function H1 (fl), the second order response is characterized

by the second order nonlinear transfer function H2 (fl,f 2 ), and higher order

responses are characterized by similar higher order transfer functions.

4.1.2.1 Sinusoidal Steady-State Response of a Weakly Nonlinear System

This section closely follows the discussion in [Spina, Reference 4]

and the reader is referred to Chapter 4 of that reference for a complete mathe-

matical derivation of the results presented here.

To evaluate equation 4.20, the second simplifying assumption will

be utilized, and the input to the system will be represented as the sum of Q

sinusoids Q

x(t) l Eq cos(27f q (4.21)

where Ec is complex. If we let E * = E_q, E -0 and f qf and note that

-q q-q
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§=

e §+eJ§ (4.22)COS§ =

then x[t] may be written in the complex plane as

1 Q
x(t) = E _ E exp(j2Tf t) (4.23)

2q=-Q q q

Utilizing this form for the system input, and using equation 3.3 to obtain

the form of the n
th order response term yields the result.

I Q Q

Yn(t) = 2- qlE-QE. q E ql ' ' mq n H n (fql-f qn

exp{j2(f i+... +fn )t} (4.24)
q1 qn

This result is stated without proof, but is a result which shows

that the application of a sum of Q sinusoids to a mildly nonlinear system

7ields additional output frequencies generated by the n
th order portion

of the circuit. These additional output frequencies consist of all

possible combinations of the input freciuencies f_Q ... f J. taken n at a time.

At this point, a notational change is made and the vector m is introduced 
to

describe a particular frequency mix

m= (mQ...m-1 9mI ... mQ) 
(4.25)

This vector will represent all possible frequency mixes, since an individual

m, say mk , is defined as the number of times fk appears 
in a particular

frequency mix. The response frequency described by the m vector is thus

Q
= mf =(m -m )f +..+(mQ-m )f (4.26)

m k=-Q k ki-l1i Q-Q Q
k#O

For an nth order portion of the response, the mk's are constrained such that

~Q
kZQmk-n (4,27)
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This, therefore, restricts the possible frequency mixes which may

appear in equation 4.24, while at the same time quantizing all possible mixes.

Now, given a particular vector m, a well known result from

combinatorial analysis states that the number of ways the indices ql.. .q

can be partitioned such that m describes the output frequency (i.e., f

appears mQ times, etc.) is given by

n!
(n;m) = m(4.28)f(m-Q!)...(m-l!(ml! (mQ!) I

The general term in equation 4.24 is then seen to be

y( tmQ M=1 I  MQ
Yn 

(t )  (EQ*) ...

H (f f ... f ,...f i ...f ... f)
nQ--V Q Q

mQ times m-l times mQ times

expWj2ii(ml-ml)f +...(m -m )f It} (4.29)
1 1 1 Q .Q Q

Combining identical terms derived from equation 4.29 yields

Yn(t) = F Yn(t;m) (4.30)

which is the equivalent of equation 4.20 given the following assumptions

n n n n
1) E = E ... E...Z

m a-0 m-O m 1 0O mQ-O (4.31)

2) Equation 4.27 is satisfied (4.32)
M_ m m _m

3) Yn(t;m) = (n_ (j )m Q * () ... (EQ)
2n  Q 1"E 1'"*

Hn(fQ...f ... f...f)exp{j2ft (4.33)

iM Q times m. times

4-9



Equation 4.30, subject to the constraints 1, 2, and 3 above, is the input/output

relationship used in the nonlinear transfer function approach. One further

simplification will be needed to obtain equation .30 in a form which will be

useful for implementation in NONLIN.

4.1.2.2 Two-Tone Sinusoidal Response of a Weakly Nonlinear System

Combinatorial analysis yields the result that, if the excitation

of equation 4.30 consists of Q sinusoids, the summation in 4.30 extends over

M = (2Q +n-l)! (434)

n! (2Q-)!

distinct m vectors. Therefore for a two-tone input, (i.e., Q-2),

M = (4+n-l)!
n!(6)

Then Yl(t) contains 4W frequency mixes, y2 (t) contains 10 mixes, y3 (t)

contains 20 mixes, and so on.

Consider, then, a system where terms with n>3 contribute

negligibly to the output. There will then be 34 different frequency mixes

arising from an input of the form

x(t) = E1cos2rf t+E 2cos2rf 2t (4.36)

which may be re-written in the form of equation 3.23;

x~t - -j2rrf~t - -j2irflt - j2nflt - J2rf2t

2 { E2 * +E1 *e I +E1 e +E2 e } (4.37)

Substituting equation 4.37 into equation 4.30 yields Table 4-1,

which gives the 34 responses which must be summed to obtain yn(t).

Each of these 34 frequency mixes represents a different nonlinear

response; harmonic generation, intermodulation, desensitization,etc., as seen In

the table. These 34 responses will be utilized in the next section to

illustrate the final modification of equation 4.30, leading to the series

which describes system level nonlinear behavior.
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4.1.3 The liodified Nonlinear Transfer Function Approach

As a prelude to the final simplification to equation 4.30,

consider the fact that the nonlinear transfer functions are, in general,

complex functions which nay be written

H n (f1~f2*** fn~ =H n(f l'f 2 -.f n)Ien f2 . (4.38)

where 0 is an arbitrary phase in the complex plane.

n!

Consider, also, that the 34 responses in Table 4-1 occur at

considerably fewer than 34 frequencies. The total response at each frequency

is thus found by adding all individual responses at that frequency in the

comlex plane. This process can be illustrated for a particular case if the

total n<3 response at frequency f 1 is considered. The responses which must

be sunned to obtain the total response may be obtained from Table 4-1, and

are: for n=1 the 1st response and for n=3, the 4th and 9th responses. Combin-

ing these in the complex plane results in Figure 4-2, which is a phasor

diagram showing how the responses are added vectorially to obtain the total

response at f1 yr(t,f 1)

The final simplification of equation 4.30 will involve limiting

the phase of the nonlinear transfer functions to either 0 or n. This is

funtiosas opposed to the complex functions of the Volterra analysis.

Teefunctions will be called modified nonlinear transfer functions, due

to terderivation from the complex Volterra functions, and are the

functions used to describe system nonlinearities, where phase information

is generally unavailable. The effect of limiting the transfer function in

this manner will be examined in detail as models describing each of the

individual effects are developed. The first effect to be considered is

desensitization, which is examined in the next section.
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4.2 Desensitization

Desensitization occurs when an interfering signal enters a

receiver with sufficient magnitude to cause the receiver amplifiers to

operate nonlinearly. This results in the response to the desired signal

being "desensitized" due to the nonlinear operation of the amplifier.

Desensitization can be a serious problem in a complex electromagnetic environ-

ment because its effects are cumulative; i.e., all signals entering the

receiver RF passband contribute to desensitization, and the resulting nonlinear

operation may cause system degradation even if individual intbrfering

signals cause no problems.

To consider the effects of a third order desensitization, assume

that the system of interest is only mildly nonlinear, and that terms of order

n>3 need not be considered. Assume also that inputs to the system are

voltages, one of which is the desired signal and modulation:

Si (t) = S[l+s(tl] cos Ws t  (4.39)

while the other is an interfering unmodulated carrier.

Ii(t) = I cos W it (4.40)

Assuming that noise is negligible, the total input to the system is simply

the sum of the two signals S i(t)+li(t ) . This is a two-tone cosinusoidal

input of the form seen in Section 4.1.2.2, and therefore the input/output

voltage relationship may be derived from Table 4-1. Because of the presence

of s(t), it is assumed the system behaves quasistatically. Similar assumptions

will be made in the discussion of other nonlinear phenomena.

v0(t) - [l+s(t)]SHl(f ) cos Wst

+ 12 SH3 (fs,fi,-f)[l+s(t)] cos Wst (4.41)

In equation 4.41, it can be seen that the cosine term involving w i has been

eliminated. This arises from the factor of 1/2 in the second term of

equation 4.41. The equation is actually of the form

v (t) = [l+s(t)]SH (f ) cos Wst
0 15s

S2 3f~l2
+ 351 H 3(f,fifi)[l+s(t)]cos Wst cos wit (4.42)
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However, since cos2 w t 1+1 cos 2w t, and since terms involving cos 2w t2 2 i
are eliminated due to receiver selectivity, equation 4.41 correctly describes

the input/output relationship.

Now, collecting similar terms in equation 4.41 yields

Vo0(t) fi S[HI(f s) + 32 c3(fs~fi,-fi)]-[l+R(t) Cos Wst (4.43)

This equation represents the transfer functions as complex functions with

arbitrary phase. This relationship is depicted graphically in Figure 4-3.

To obtain equation 4.43 in a form useful for a system level analysis requires

that these arbitrary phase angles be specified. This specification will

eliminate phase considerations, and involves two assumptions.

1) The linear (desired) portion of the response is entirely

positive real. (i.e., 4i=0)

2) The phase angle of H3 will be limited to values of 0 or 7r.

If equation 4.43 is to represent desensitization, however, the actual system

output will be less than the linear portion of the response. This leads to

the requirement that 4)3 should be approximated by IT, which is equivalent to

the statement that H3, which is actually of the form 1H3(f ,fi,-f ) eJ 
3 is

an entirely real, negative quantity, due to the fact that e+j7--l. Equation

4.43 may be rewritten using this requirement

Vo(t) - S[H (fs)- 3 2 H3(fs,f 9-f )] [l+4(t)] Cos W t (4.44)

Using equation 4.44, the effects of desensitization may be expressed as:

ASo  S (volts)-S;(volts)*

S = S (volts) (4.45)
0 0

where So(volts) - desired signal output without interference

S'(volts) - desired signal output with interference
0

ASo 3 1
2H3(fs'fi-f)-- -(4.46)

S 2 H1(fs)

AS AS
* Since - dB = 0 corresponds to total desensitization, -S dB < 0.

0 0
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Figure 4-3 Phasor Diagram of 3rd Order Desensitization
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AS dB = 20 log 12+20 log (4.47a)
HI2 H1 f

01
HI

= 2P dBW+F(fs,f )dBW where F(fs,f.) -20 log Hl (4.47b)
I s'i si 3H3

= 2P dBm+F(f If )dBm

where P dBm = interfering signal power in dBm

F(fs ,fi ) = function that represents device characteristics with

F(fsfi) dBm = F(fs,fi)dBW - 60 dB.

In equations 4.47a and 4.47b, the impedance is assumed to be

normalized to 1 ohm. The power, P in equation 4.47b is assumed to be the

avearge interfering signal power. These same assumptions will be utilized

as models to describe the remaining nonlinear effects are developed.

Equation 4.47b may be equated to an interference margin by
AS

expressing -- in terms of a reference level. This level will be assumed to
0

be -20 dB [the minimum desensitization] and the interference margin will be

AS
the amount by which 0 exceeds -20 dB. Expressen mathematically:

S
0 AS

Interference Margin = S+ 20 dB (4.48)
0

In order to use equation 4.48 to calculate the effects of

desensitization, it is first necessary to evaluate the function F(fs,f).

If the change in signal level AS /S * is known for some reference interfer-o 0

ing signal level (P *) this may be substituted into equation 4.48 and F(f, i )

be calculated. Thus.

F(ff -2Pl*(f dBm + dB (4.49)

Once F(fs,f ) has been evaluated for these specific conditions, the value may be

substituted into equation 4.48 to give an expression for 7(f ,f i) for other

interfering signal levels.

AS As
dB = 2P dBm -2P (f ) dBm +- o dB (4.50)

S0 111 L S04

If the CS04 limits of MIL-STD-461 are used for the reference interfering
AS

signal level and S is assumed to be -20 dB, default models given in Table 4.2

0

result. A graph of the CS04 limit may be seen in Figure 4.4.
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Table 4-2 Default Models for CU Desensitization
(No AGC)

Amplifiers
For interfering signal frequencies outside of theamplifier pass band; mIL-STD-461 specifies a limit of 0 dBm.

Th-refore for

fI<f L or fI>fH

where fL - lowest operating frequency of amplifier

* fH - highest operating frequency of amplifier
PI dBm - 0 dBmr,,s-l
I o d - -20 dB

ASo
. d PI dBm -20 dB

Receivers

For interfering signals within the receiver 80-dB
bandwidth the default models are:

fo V., < fI W-f

where fo = receiver tuned frequency

W - receiver 80-dB bandwidth
PI (fI)dBm -PR dBm - [f-fo]

where PR dBm - receiver sensitivity

rR *dB --0 dB
"dB = 2PI dBm "2PR dBm - - [f-fo] -20 dB

For interfering signals outside of the receiver 80-dB
bandwidth but within the overall tuning range of the receiver,
models are:

o or fo + f

where fL - lowest operating frequency of receiver

fH j highest operating frequency of receiver
Pl'-(f, ) d Bm -PR dBm + 80 dB

.. dB - 2 P I dBm -2P R dBm - 190 dB

For interfering signals outside of the overall tuningrange of the receiver the models are:

flI < f L  or f I ) f H

PI d~a - 0 dim

S01. dB - -20 dB

[- d - 2P dUm -20 dB
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Limit

B

oA -

0

f I"cev. rtimed frequency or bend center far amplifiers.
-, eeL twtable, frequency of receiver band in ues or tne lowest frequency

of amplifier psband.
f2 Htiget tunable frequency of raceiver band In use or the highest frequency

of amplifier psasbiAd.
W - xtwidth between the 80 d8 points of the receiver selectivity curve as

defined in the teet sample', technical requirement. or the control Plea.

1. The limit at A is 80 d8 above the input level required to produce the staall
reference output. (This lUnit *hall aot be waed for amplifiers)

2. The limit at B shall be net as follea:

a. Receivers: 0 d~e applied directly to the receiver Input ternal.

b, Amplifiers:, The limit shall be as specified In the .i"t eample's techft!"'-
requirement or control plAn. If no limit is defined In the above, documents, the
0 dbm value shall be used.

Figure 4-4 Limits for CS04
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The preceeding equations are for signals below the automatic

gain control threshold (PAGC ),and for interfering signal power less than the

saturation power level corresponding to the desired signal level and the

frequency separation between the input signals. When the desired signal is

above PAGC, the gain is reduced proportional to the increase in the desired

signal so that the output remains constant. The gain reduction may be

represented by

AG dB = k(PD-PAGc)

k = gain reduction fraction assumed to be 1 if all AGC is

applied prior to the nonlinearity

P = desired signal level in dBm

P = AGC threshold in dBm
AGC

The resulting equation for AS IS will be
0 0

AS
---dBs = 2PI dBm - 2(P D-P AGC)+F(f s,fi) dBm (4.51)
0

Equations 4.50 and 4.51 are valid if only terms of order N<3 must be con-

sidered to represent the transfer function of the nonlinear device. However,

for any more than slight desensitization, higher order terms must be con-

sidered. Higher order terms could be added, but a series to represent the

required circuitry is slowly converging and computation of the coefficients

is, in general, not practical. The effects of considering only third order

desensitization may be examined by considering Figure 4-5, which shows the

effect of phase angle on desensitization. This figure shows that

higher order terms and phase must be considered to accurately predict large

desensitization. In fact it has been shown that the equations given above

are valid only for desensitization of approximately I dB (Spina Ref. 4).

One might also represent the device as an ideal limiter, that is,

constant gain for input signals below a saturation tv-' :old, and complete

saturation thereafter. By using a Fourier series (%. lows more rapid

convergence) and numerical integration to obtain the co; .ents, the

input-output relation can be computed.5 The resulLing desensitization
(S;/So ) would be:

.IA.

D = 2 arc sin (-I---) for I ISAT (4.52)

iIT Research Institute, 3rd Order Intermodulation Study, RADC-TR-67-344,

Rome Air Development Center, Griffiss Air Force Base, July 1967.
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where
ISheefi saturation threshold in volts

I = interfering signal level in volts

This equation describes the desensitization of desired signal as a function

of interfering signal level.

The desensitization may be expressed in dB as:

2 -D dB = 20 log[- arc sin [log (PsAT-PI)/20 ]]]  (4.5

where

PSAT = saturation power in dBm

P, = interfering signal power in dBm.

This discussion of desensitization is of limited use for IEMCAP,

however, due to the lack of accuracy inherent in the approximations involved.

The model is merely included for reference, and as an illustration of the

difficulty of. obtaining accurate results for strongly nonlinear systems.

4 .3 Gain Compression and Gain Expansion

The phenomenon of gain compression/expansion is very similar to

that of desensitization. It, too, is a third order effect which saturates

the receiver amplifier stages and causes nonlinear operation. However,

while desensitization is caused by an interfering signal, gain compression/

expansion is caused by the desired signal, which may be of sufficient magni-

tude to cause nonlinear amplifier operation.

The equations describing gain compression/expansion are very

similar to those presented in the last section. From Table 4-1, note that

compression/expansion is obtained from n=l, combination 1, and from n=3,

combination 9. It will be assumed that the desired signal is equivalent to

equation 4.39, and that the other assumptions are as described in Section 4.2.

The input/output equation may then be written

o Hl(f)[l+s(t) Cos st + I SH3 (f

[w+m(t)] cos s t (4.54)
which may be written

S 2H3 (fs,-f,f5 If(4.(t)
V(t) = S(Hl(f H (][149(t)] cos W t (4.55)
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In equation 4.55, the (+) and (-) arise from phase considerations similar to

those presented in Section 4.2, and refer to gain expansion and compression

respectively. This corresponds to considering gain expansion to have a phase

of 3 0 and gain compression to have a phase of 03 - n
. This situation,

described by equation 4.55, where the voltage gain is not linear, but varies

with desired signal power, may be seen in Figure 4-6.

At this point it becomes advantageous to consider only gain

compression, since the discussion of gain expansion will be exactly the same,

except for the (+) sign. This will simplify the discussion while the results

obtained will be easily adapted to describe expansion effects.

Consider, as in Section 4.2, the ratio

AS S (volts)-SI(volts)
0 0 0 (4.56)

S 0S 0(volts)

3 S 2 H 3 (fstfs-fS)

HI(f S )

and
AS 2 3 R3(fsf s'-f )

s d 20 log S +20 log I (4.53a)

2P dBm + F(f) dBm (4.58b)

An interference margin may be developed, as was done in Section @.2.

Again utilizing a reference value of -20dB, the interference margin may be

written: AS
Interference Margin = 0+ 20 dB (4.59)

0

The value of the function, F(f.,may be evaluated by the same means as in

Section 4.2. Lex (P*) be a reference input power which produces a gain3S s

compression of (-- *. Then equation 4.59 may be evaluated for F(f.),and

the result substituted back into equation 4.59. This leads to the expression:

Ao dB - +Ps
*dBo°]

dBm [ TdB-2P* dBm 
(4.60)

SO a

Given empirical data for various input signal powers, Ps* default

models for F(&) may be formulated.

It is possible to include the effects of Automatic Gain Control in

equation 4.60 by noting that the modification needed to describe AGC in

equation 4.60 is very similar to that found in equation 4.51. Performing this

modification results in
4-24
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As
o B= 2P dBm - 2(PD-Pr_,+Ff..0 d P2)+F(f)dBm 

(4.61)S sD G

which is the equation used to describe "small signal" gain compression/

expansion in a receiver with automatic gain control.

4.4 Intermodulation

In this section, models used to describe nonlinear intermodulation

effects will be discussed. Intermodulation is the process occurring when two

or more signals mix in a nonlinear device to produce an output at a frequency

which causes performance degradation. Effects which will be discussed in

this section are second, third and fifth order, two-signal intermodulation

products, and three signal, third order intermodulation products. These

effects will be considered for three cases:

1) Intermodulation products generated in a receiver.

2) Intermodulation products generated in a transmitter.

3) Intermodulation products generated in a nonlinear metallic

junction.

These will be considered separately because there are several simplifications

which make the examination of transmitter and receiver intermods much less

involved than an examination of products generated in a metallic structure.

The discussion of two-signal, third order intermodulation will be quite

detailed, while the equations describing higher order effects will be extrapo-

lated from the third order, for although a rigorous mathematical derivation

of these effects has been performed, to repeat it here would merely lend

complexity to the discussion without offering any additional insight. The

models used to describe transmitter intermodulation products will be developed

following the Volterra analysis of receiver intermods. Following the develop-

ment of the effects described above, the models utilized to describe structur-

ally generated intermods will be presented. These equations will be based on

empirical data, since structures cannot be considered mildly nonlinear, which

prohibits ec:-ription of their effects by a Volterra analysis.
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4.4.1 Two-Signal, Third Order Receiver Intermodulation Products

The assumptions used in the analysis of third order intermodulation
are the same as those used in the desensitization and gain compression/

expansion analyses with the exception of the representation used for the

interfering signal. In this section, it is assumed that there are two

interfering signal components, Ii(t) and I2 (t), present at the input of the

nonlinear device. The first interfering signal component is adsumed to be

an unmodulated carrier and the second is amplitude modulated. The total

interfering signal is thus represented by

li(t) f I1 cos W1 t +12 (l+i(t)) cos W2t (4.62)

For this discussion of third order intermodulation the terms in the nonlinear

transfer function expansion which must be considered are of the form:2 + 3
v (t) = Si(t)+3S (t)I (t)+ li(t) (4.63)

The nonlinear transfer functions have not yet been included in equation 4.63,

although they are an inherent part of the Volterra analysis. They will be

included following several simplifying assumptions. This will serve to

simplify the notation considerably, with no loss of generality. The

assumptions are:

1) As has been discussed previously, the Si(t)i(t term contri-

butes to desensitization.

2) The signal at f1 is assumed to be nearer the center of the

receiver passband than the signal at f2 "

3) Of the possible third order responses:

a) 2fl+f2
b) 2fl-f2

c) 2f2+f1

d) 2f2-f1

the response, (b), at 2fl-f2 is assumed to be the major interfering signal

component. It is assumed that the others will be sufficiently attenuated by
RF selectivity to be insignificant since they fall farther from the center of

the RF passband than does (b).

4-27
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Given assumption 1, equation 4.63 may be rewritten

vo(t) = Si(t)+I3(t) (4.64)

But I i(t) may be expanded using the binominal theorem:3 3 2 2 3

3(t) = I3(t)+312(t)I2(t)+31,(t)I2(t)+I2(t) (4.65)
i  112122

Now, making use of assumptions 2 and 3 leads to the input/output relationship

Vo(t) = S (t)+31 2 WI1(t) (4.66)

Given that the interfering signal is represented by equation 4.62, equation

4.66 may be written

2 2
V (t) = Si(t)+3 [I Cos W 1 t 12 [l+i(t)] cos W 2 t] (4.67)

Making use of the relationship
1

cos a cos b f * [cos[a+b]+cos[a-b]] (4.68)

2leads to one term in equation 3.67' at the interfering frequency (2fl-f 2)

v3(t) = Sl(t)+ 2_212 l+i(t)] cos(2wl- 2 )t (4.69)

If the appropriate nonlinear transfer functions are now added to

the input/output relationship, and if Si(t) is again assumed to be a modulated

carrier, equation 4.69 becomes:

vo(t) = SHI(f )[l+s(t)] cos W t

+ 1I2 H3 (f,f,_f2 )[l+(t)]cos(2w - 2 )t (4.70)
6

The second term in equation 4.70 is the third order intermodulation 
term.

Higher order terms may also be calculated from the relationships in foot note

6, which will lead to the equations presented in future sections which

describe these high order intermodulation effects.

6 A general expression for the contribution of an nth degree term to a

particular two signal intermodulation product is given by:

n! 1 2 coII(a-2nets ton a te

2 n-1 (a-nCL)!(a-ncO)In 
(-n)t(82n 8 )w 2t]

For this case, a+$ - n, and n and no are zero/positive integers such that
no < 1/2 aand n < 1/2 a. if consideration is limited to contributions of

nth degree te~s to nth order effects, n and no are zero and the above
equation reduces to

n1 I1O i

n-1 2 os(QW1± $W2)t.
2n- al 0!

This equation is developed from a combinatorial analysis in Reference 11.
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Returning to equation 4.70, it may be seen that the amplitude

of the third order intermodulation carrier is given by

iMv(t) = 3 ii 2H3 (fl,fl,_f 2) (4.71)

while the intermodulation output power in dBm is given by

PIM 2P1 dBm+P2 dBm+20 log dB (4.72)

For receivers, it is convenient to express the results in terms

of an equivalent input power level (i.e., in terms of the desired signal level

P ) that is required to produce the same effects in the receiver as the

intermodulation product . The output for the desired signal may be found from

equation 4.70, and is just the magnitude of the desired signal carrier.

Desired signal output power (dBm) = P D dBm+H1 (f s) dB (4.73)

If this desired output power is assumed equal to the intermodula-

tion output power, equations 4.72 and 4.73 may be equated, resulting in

P dBm = 2P dBm+P dBm+20 log
L =2 1 d~+ 2  log,,

+H3(fl~fl,-f2) dB -HI(fs) dB (4.74)

= 2Pl+P 2+IMF(fs,ff 2 )dBm (4.75)

where

IMF(fs~flf 2 ) = The intermodulation functional = -20 log r Hl dBW.

With reference to equation 4.74, the equivalent input signal for

intermodulation is a function of the power levels of the two interfering signals,

the nonlinearity factor (20 log ffi k=), and the transfer functionals. The

problem becomes how to evaluate the intermodulation functional [20 logj

+H 3(flf,9-f 2 )-H1(fs for a particular receiver. As was the case with desensi-

tization, it will be convenient to use specific data to evaluate the functional

for a particular set of input conditions.

Intermodulation measurements made in accordance with MIL-STD 461

or MIL-STD-449C are performed in a manner such that the equivalent intermodula-

tion signal is equal to the receiver sensitivity, PR' (i.e., "-PR ) and the

two interfering signals are equal in amplitude. If this is the case, and if

P*(fif2 ) is defined as the power required for the signals at fl and f2 to
produce a standard response, then

IF(fsf, f')M PR-3P*(fl, f2 (4.76)
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Substituting equation 4.76 into equation 4.75 yields the result

P dBm = 2P dBm+P dBm+PR dBm-3P*(fl,f2 ) dBm (4.77)

Equation 4.77 applies to intermodulation situations where the two signals pro-

ducing the intermodulation do not saturate the receiver front end, and the

resulting intermodulation does not exceed the receiver automatic gain control

threshold. The next problem is to define what happens to the intermodulation

product as the input signals are changed to levels which result in conditions

other than those for which the spectrum signature measurements were performed.

As the input power for one or both of the intermodulation signals

or the desired signal is increased, the resulting signal exceeds the receiver

automatic gain control threshold, the receiver AGC is activated, and the

receiver RF gain is reduced. For this situation, equation 4.77 must be modi-

fied to account for the gain change (AG) resulting from the AGC as shown below.

P dBm = 2P2dBm +PdBm +PRdBm -3P*(fl,f2)dBm + AGdB (4.78)

In addition, as either of the interfering signals is increased, a

saturation level, P SAT(f) is reached such that additional increases in the

interfering signal do not result in increases in the equivalent intermodulation

input power. For this condition, the equivalent intermodulation input power

may be represented as shown below:

a) for P I(f )>P SAT(f );

PIMdBm = 2PsAT (f)dBm+P dBm+PRdBm-3P*(flIfdBm (4.79)

b) for P 2(f 2)>P SAT(f 2);

P dBm = 2P dBm+P (f )dBm+P dBm-3P*(flf2)dBm (4.80)
TM 1 SAT 2 R -3 ( 1 fd (480

Table 4-3 summarizes the third order intermodulation equations for the various

conditions of interest.

Default models based on MIL-STD-461 may also be developed, due to

the assumptions used to arrive at equation 4.77. The (CS03) limit of MIL-STD-

461 specifies that no intermodulation responses shall be observed when either

interfering signal is 66 dB above the level necessary to produce the standard

response, P R This leads to the requirement:

P*(fl,f2) = PRdBm + 66 dB (4.81)
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Table 4--3 Third Order Intermodulation Equations

Case Condition Equation

I Pl* 2=PST 2P1+P 2+

p 'm<AT IM 1 ., 2)

II pli~P 2 PSA 2PI+2+

p IM >pAGC IMF(ff 2 )+AG

III p >P PI =2P +P +1 SAT IM SAT 2

p 2 <PSAT IMF(f1,f 2)

IVp1 <pSAT pIM 2 1 +PSAT

p 2 >PSAT IMF(ff 2)

where IMF(f1 ,f) p = *f~
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Substituting equation 4.81 into equation 4.77 leads to the third order MIL-

STD-461 default model:

PIMdBm = 2P IdBm+P 2dBm-2P RdBm-198 dB (4.82)

Equation 4.82 may be related to the IEMCAP Interference margins by noting that

Interference margin = PIM dBm-PR (4.83)

This will lead to the requirement that

Interference margin = 2PIdBm+P2 dBm-3PRdBm-198 dB (4.84)

which is the default model utilized within NONLIN.

4.4.2 Second and Fifth Order, Two Signal Receiver

Intermodulation Products

As a continuation of the analysis presented in the previous section,

consider a second order intermodulation product occurring at'frequency f +f2 .

Extrapolating from equation 4.64 yields the input/output relationship:

v(t) = S (t)+i2 (t) (4.83)

Given the assumptions of the previous section regarding signal representations

leads to equation 4.85 being rewritten as:

v (t) = S i(t)+[l+i(t)]l 1 2 [H2 (fl,f 2 )cos( 4W 2 )t

+H2 (f I ,-f 2 )cos(w 1i-W 2 )tj (4.86)
Of course, only one of the frequencies, fl+f 2 or f -f2 will fall into the

receiver passband, so equation 4.86 will reduce to either of two equations,

corresponding to the (+) and (-) below:

vo0(t ) - SHl(fsa)1l+s(t)]cos W st

+1i12 H2 (fl,±f2 ) (l+i(t)]cos(wl±w2 )t (4.87)

From equation 4.87, a representation for the intermodulation output power

similar to equation 4.72 may be given:

P IMdBm - PIdBm 2 dBm+H2(fl,'f2)dB (4.88)
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If equation 4.88 is presented in terms of an equivalent input power, a

relationship analogous to equation 4.74 may also oe found:

PIM - P dBmP2 dBm+H2 (f ,+f2 )dB-Hl(f,)dB + 20 log 2 (4.89)

= P1 dBm+P2 dBm+IMF(fl'f 2 ,)dBm (4.90)

To evaluate the IMF, again assume that the interfering signal powers are equal

to each other and to P*(fl,f2 ), the power required to create a standard

response. If this is the case, and if Ple the receiver sensitivity, is the

standard response, the IMF is given by

IMF(flf 2 ) = R- (4.91)

and equation 4.90 becomes

P dBm = P dBm+P dBm+P dBm-2P*(flf2)dBm (4.92)
IM 1 2 R 2 1 f2)dm(.2

In a manner analogous to that presented in Section 4.4.1, equation

4.91 may be modified to account for the effects of automatic gain control and

receiver saturation. If these modifications are performed, the equations in

Table 4-4 result.

If the (CS03) limit of MIL-STD-461 is again applied, the second

order intermodulation default model results:

P IMdBm = P1+P 2-P RdBm-132 dB (4.93)

The interference margin as determined by the criterion described in Section 3.4.1

is

Interference margin - P IdBm+P 2dBm-2P RdBm-132 dB. (4.94)

To examine the effects of fifth order intermodulation, it will be
useful to refer to footnote 6 to obtain the 5th order contribution to the
fifth order effect. This fifth order effect is assumed to be the only signifi-

cant response. The fifth order term is:

8 5 (flfl,fl,f 2 f 2 )1 1 2 [l+i(t)] 2cos(3wl2w2)t (4,95)

From this, it is a simple matter to obtain the intermodulation carrier amplitude
and the intermodulation output power. These are:

32
IM(f,f,f ,-f2 ,f 2 )I 2  (4.96)
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Table 4-4 Second Order Intermodulation. Equations

Case Condition Equation

pil 2 <P SAT p im=ptP 2 +IMF(fl,f 2 )

pIM < AGC

Pl~~~~~p ~ 2<SA pI +P 2+

pIN?)ACC IMEF(ff 2 ) A G

fit pi1lpSAT pIN p SAT +P 2+IMF(flif 2

P 2 <P SAT

<P SAT I1m= 1 + SAT (1 , 2)

p2 >PSAT

where TMF(f 1 ,f2 R-P*fo 2 )
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a

and
5

PDdBm 3PldBm+2P2dBm+20 log (t) + 20 log 4 /2

+H5(ff,,f,,-f2$-f2 dB (4.97)

Using the assumption regarding standard responses presented previously yields

PIdBm 3PldBm+2P2dBm+20 log (t) + 20 log 4 42

+H5 (fl4 f1,f,,-f 2,-f2) dB-H1 (fs) dB (4.98)

while evaluation of the IMF leads to

IMF(f) - P- 5P*(fl~f2). (4.99)

substituting equation 4.99 into 4.98 the equivalent intermodulation power may

be obtained

P ,dBm = 3P dBm+2P dBm+P dBm-5P*(flf) (4.100)

1 2 R 51'2)

Equation 4.100may be modified to account for the effects of AGC and saturation.

The modifications are very similar to those performed to obtain

Tables 4-3 and 4-4, and these changes lead to the results presented in Table 4-.5.

The default model based on MIL-STD-461 is again derived from the

relationship in equation 4.81, and is found to be

P IMdBm - 3P +2P 2-4P RdBm-330 dB (4.10;)

From equation 4.101, and the assumptions stated previously, the

interference margin is found to be:

Interference margin = 3PldBm+2P2dBm-SPRdBm-
330 dB
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Table 4-5 Fifth Order Intermodulation Equations

Case Condition Equation

I PP P =pST M3P I+2P2

pIMPAGC + IMF(f1 ,f)

1I 19 ~2 <PSAT PIM=3P,+2P 2

p m > AGC +IAF(ff 2 )+AG

III PI >pSA Ptr3PSA+2p2

p 2' :PSAT +IMF(f1,f 2)

IV 1 <pSAT P11r 3 P, +2PSAT

p 2 >p SAT +IMF(f,,f 2)

where IMF(ff 2) - 5 P5 (flof2 )
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4.4.3 Three Signall Third Order Receiver Intermodulation Products

Equations similar to those in previous sections may be developed

for third order, three signal intermods, where the output will be at frequencies

of the form: f

fim - ±fl+f2+f (4.102)
17:-- 2--3

Due to RF selectivity, however, all three input signals must be approximately

equal, or they will be attenuated and cause no degradation. Because of this,

and because f must also fall in the RF passband, equation 4.102 will be
TM

constrained to frequency mixes such that two of the three frequencies will be

positive. For the purpose of the following mathematical discussion, the

intermodulation frequency will be represented by:

f = f1+f2-f3 (4.103)

Based on an analysis similar to that presented in Section 4.4.1, the input/

output relationship may then be expressed by:
3

(t)= -III 3H3 (f,+f2 '-f3 ) c 1S(+ (4.104)

From this, it is possible to find the intermodulation output power

PIdBm-P dBm+P dBm+P dBm+20 log(l+H 3 (f1,+f2,-f3 )dB (4.105)

Equating the intermodulation output power and the equivalent desired power

leads to a result similar to equation 4.74.

P dBm=P dBm+P dBm+P dBm+20 log(jL+H 3 (flo+f 2 ,-f 3 )dB-Hl(f s) (4.106)
IM 1 2 3 3 2

P d Bm+PdBm+P 3dBm+IMF(ff 2 f 3 ) (4.107)

It will again be useful to evaluate the IMF in terms of specific

data, as was done in Sections 4.4.1 and 4.4.2. Given the assumptions of those

two sections, the IMF may be written

F(fl'f2' f 3)P-3P*(fl+f" f3 (4.lC8)

which transforms equation 3.107 to

PiMdBm-PldBm+P2dBm+P3dBm+PRdBm-3P*(fl,+f 2,-f3 )dBm (4.109)

The results of incorporating AGC and saturation effects into equation 4.10Q

leads to the equations in Table 4-6.
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Tabl 4-6Third order, Three Signal InternodulstiOn Equations

Ca bse4- Co ditio n1 
Eju tiofl

Casepli p~~'3~ A PIpaPl+PZ+ 3

~IMAGC +IHE(f1 ,ff 3

II l I 'AGC 
+ff~(f1,f 2 9 3)+

ul i>pS PIMPSAT~p2~3

IV P3.'p2>SAT 
PlIM

2PSAT3

where 1MF(f, 1 ,f 2 vf3  Pi7P-l+~-
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There are no MIL-STD-461 limits for three signal intermodulation

products. For the purpose of developing default models, however, it will be

assumed that the three interfering signal powers are each equal to P3 (fl,+f,

-f3 )
, which in turn is the power 66 dB above the power P which causes the3 r

standard response.

P IMdBm = P IdBm+P 2dBm+P 3dBm-2P RdBm-198 dB (4.110)

This is the default model which will be utilized by NONLIN, which has been

extrapolated from the (CS03) requirements of MIL-STD-461. Again, it is

possible to express equation 4.110 in the form of an interference margin as:

Interference margin - P dBm+P 2dBm+P 3dBm-3P RdBm-198 dB (4.111)

4.4.4. Transmitter Intermodulation Products

In addition to the intermodulation products generated in receivers

discussed in previous sections, products may also be generated in the nonlinear

portions of transmitters. Due to the nature of transmitter nonlinearities,

however, Volterra techniques are not the appropriate analytical tool for use

in the study of transmitter intermods. Instead, the intermodulation output

power, which propagates from one of the interfering transmitters to the

affected receiver is of the form (See Reference 15)

P dBm = P dBm-A dB -B log Af% (4.112)
IM LO

where

PL the lowest interfering signal power

Af% - the average percent difference of incoming

transmitter frequencies from the mixing

transmitter frequency

A,B = constants which must be determined for

each transmitter and each product.

Based on equation 4.112, default models may be formulated for use in NONLIN.

These models are:

e Third order, two signal or three signal

1) If AfM<l%: A-I0,B-O

PIMfP dBm-10 dB

2) If Af%>1%: A-10, B-10

SIM PdBm-30 log Af% -10 dB
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o Fifth order, two signal

1) If Af%<l%: A=30, B=O

P PdBm -30 dB
IM I

2) If Af%>l%: A=30, B=30

PIM , PId Bm -30 log Af% -30 dB

* Second order, two signal

Due to the nature of transmitter nonlinearities,

second order, two signal intermodulation products are

insignificant. This may be seen by considering the

intermodulation output frequency

f =f+f (4.113)

IM 1:-2

It is obvious that at least one of the frequencies

flof2 or f im will always be outside the transmitter

operating band, which will cause the power at the

out-of-band frequency to be attenuated to such an

extent that the product is insignificant and causes

no system degradation.

For reference, the default models for all receiver and transmitter inter-

modulation products are presented in Table 4-7.

4.4.5 Structurally Generated Intermodulation Products

In addition to the receiver and transmitter intermodulation products

discussed in the last three sections, it is possible for products to be gener-

ated in the nonlinear metallic junction between two structures. An example of

this effect would be the generation of intermods at an interface between a

rusted piece of metal and an unrusted piece. Since this problem often occurs

at such an interface, it has been traditionally referred to as the "rusty bolt"

problem. Major intermods generated at this type of junction will be second

and third order, two-signal intermods, and three signal, third order intermods.

As stated previously, the highly nonlinear nature of this type of

junction precludes a Volterra analysis. For this reason, the models used to

describe structurally generated products are entirely empirical in nature, and

may be described by the equation

PImdBm = PLOwdBm-A dB -B log (Af%) (4.114)

4-40



Table 4-7 Internod Default Models

Order Receiver Transmitter*

2(2 sig) P =P+P-P-l 32 dB

3(2 sig) P 1 2PtP,-2P-l98 dB P M- P 1-10 dB

or P~ IM -l0 dB

-30 log tAf(%)

3(3 sig) P P + - P ~1 2 P ~2 198 dB Same as above

5(2 Big) P IM 3P I+2P2-4P-330OdB P =MP 1-30 dB

or P -Mp1 -30 dB

-30 log Af(%)

*The first equation for each order corresponds to tAf(%)<l%.

The second is for Af(%)>IZ.

4-41



As was the case in previous sections, PLOW will be the lowest power incident

on the junction, and A and B will be constants which must be determined for

various orders of intermodulation for each junction.

Utilization of equation 4.114 necessitates determination of all

intermodulation frequencies which could cause degradation. For this reason,

the frequency simplifications of previous sections may not be utilized, and

many more frequency combinations must be considered. These are enumerated

in Table 4-8.

Table 4-8 Structurally Generated Intermodulation

Output Frequencies

Order Frequencies Number

2(2 signal) +f l+f2  4

3(2 signal) ±2f +f
1 1- 2 8

±2f +f
-2 - 1

3(3 signal) ±flf 2f 3  8

A default model based on equation .114 has been developed for structurally

generated intermodulation products and is

P IMdBm = PLOWdBm-10 dB (4.115)

In equation 4.115, it is assumed that the junction is very wideband, eliminating

the frequency dependent term (i.e., B-0). It is also assumed that since the

products are all low order, the default model will be the same for all orders

and frequencies.
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4.5 Cross Modulation

Cross modulation is the term used to describe degradation caused

by the transfer of modulation from an interfering signal to the desired signal.

Cross modulation is similar to desensitization (discussed earlier) in several

ways which will bear on the following discusssion. The similarities are:

1) Cross modulation is treated as a third order effect

2) Cross modulation may be considered a nonlinear

phenomenon which occurs at intervals corresponding

to increased interfering signal levels. This

situation is depicted in Figure 477, where the

desired signal is an unmodulated CW and the

interfering signal is a pulse modulated CW.

Based on the preceding similarities, the discussion of cross

modulation will closely follow that of desensitization except for the repre-

sentation of the interfering signal, which is assumed to be an amplitude

modulated carrier, with modulation such that i(t) is less than one.

li t) = I[l+i(t)] cos Wit (4.116)

Then, referring to Section 4.2, one may obtain the input/output relationship

v(t) = S (t)+3S (t)I 2t) (4.117)

Expanding the expression I (t),

I (t) = 12[l+21(t)+i 2 (t)] 1 + 1 cos 2wit] (4.11)

4-43



GAIN

t A INPUT

T~) PULSE

GAI

GAA

A INPUT

Figure 4-7 Pulse Modulation of an AM Signal
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Again, as in the case of the desensitization analysis, terms involving cos 2wit

will be removed by filtering. Therefore, the significant terms in the output

are

v (t) = SIH 3 2 Ht (4.119)0ot 1 SHfs) + (fs'-fi'fi)[l2~)]lst)~

In equation 4.119, the term involving i2(t) is second order and is insignifi-

cant with respect to the remainder of the expression. Now, carrying out the

multiplications in equation 4.119, and eliminating terms with second order

modulation, the relation in equation 3.119 may be written

vo(t) = S[[Hl(fs)+ 3 (f f i-f )12 ][l+s(t)]
0 s2H3s i i+H3(fs fi-f)[312i(t)j]cos W t  (4.120)

which may be written
3 2Vo0(t) = S[Hl1(fs) (2V f',-ft)12

]

3-- (fs ji-fi)1 2

[1+s(t) + 21(t)]cos w t (4.121)
Hl(f )+3 (fsf 2 s

Equation 4.121 is the expression for an amplitude modulated sh;nal

where the modulation consists of a combination of the desired and i-itcrerj.,-

signal modulations, s(t) and i(t). If the modulation component resu!.,, 4:com

the interfering signal modulation is restricted so that the maximum -..plitude

of the modulation signal is less than or equal to the amplitude of the carrier,

overmodulation is avoided. In this case, the nonlinearity should not cause

significant distortion of the modulation.

7. In order to avoid overmodulation, it is necessary that:

+ f+3/2 12H3 (fsfi,-fi)m 2 2mi 1,
H1(f5)+3/2 I H3 (fs,fiI-f)

where ms8 and mi represent the maximum values of s(t) and i(t).
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One measure of the effect of cross modulation is provided by the

ratio of the sideband component resulting from the desired signal to the side-

band component resulting from the interfering signal. The resulting ratio

which is termed the "cross modulation ratio" (CMR), is expressed in terms of

ms and mi (the maximum values of s(t) and i(t) as:

[Hl(fs )+3/212H3(fs fi-fi)]m S=M H3 ff-i] (4.122)

[3/212 H 3(fsfi,-f )12m i

Expressing the ratio in terms of ms and mi provides an effective

measure when similar modulation is present on both the desired and interfering

signals. If the types of modulation on the two signals are significantly

different, it may be desirable to use some other measure of the amplitudes

(such as the RMS levels).

If the desired and interfering signals are limited to "small

signal" conditions such that

H1 (f) >> 3/21
2H3(fs,fi,-fi), (4.123)

the cross modulation ratio may then be written:
H (f )m

CMR= (4.124)
312H3 (fs,fi,-fi)mi

or
2m

cMR dB = -2PldBm+Hl(f )dB-H3 (fs,fi,-ff)dB -20 log 2 (4.125)

where P I interfering signal power in dBm

Equation 4.125 assumes that the major cross modulation is of third

order origin and results in an amplitude modulation effect. If both the desired

and interfering signals have the same modulation characteristics (i.e., msmi),

the last three terms of equation 4.125 are functions of the gain, selectivity,

and nonlinear characteristics of the device under consideration. For conveni-

ence, these terms may be represented by a single functional, CMF(f1 ), which is

referred to as the cross modulation function,. Thus

CMR dB = -2PldBm+CMF(f ,f s )dBm (4.126)
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Equation 4.126 is valid for desired signals below the automatic

gain control threshold (PAGC) and for interfering signal powers less than the

saturation power level corresponding to the desired signal level and the fre-

quency separation between the input signals. When the desired signal is above

PAGC' the gain is reduced proportional to the increase in the desired signal

so that the output remains constant. The gain reduction may be represented by

AG dB =k(p D-P AGc)

k = gain reduction fraction(=l since all AGC occurs prior to
nonlinearity)

PD = desired signal level in dBra

PAGC = AGC threshold in dBm

The resulting equation for the cross modulation ratio will be
CMR dB = -2P IdBm -2(P D-P AGC )+CMF(f I)dBm  (4.127)

When the interfering signal becomes large, the nonlinear device

will saturate. Beyond this level, if the desired signal is constant, changes

in the interfering signal level do not produce corresponding changes in the

signal-to-interference ratio. As a first approximation of the signal-to-

interference ratio for PI greater than the saturation level, PSAT' the satura-

tion level may be substituted for the interfering signal level. Therefore

CMR dB = -2PSAT +2(P AGC-PD) +CMP(fs~fi) (4.128)

The equations for cross modulation effects are summarized in Table 4 .9.

Table 4-9 Summary of Equations for Cross Modulation

Case Conditions Equation

PI < PSAT' PD < PAGC CMR - -2PI+CMF(fs*f )

1I PI < PSAT' PD 1 PAGC CMR - -2PI +
2(PAGC-PD)++IF(fs,fi)

III SAT' D AGC CMR -2P sAT +2(PAGc-PD)*CMF(f j

IV P- PSAT' PD < PAGC CMR = -2PSAT*c4F(ffi)
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In order to use the equations for cross modulation, it is necessary

to specify a value for the cross modulation functional. If the cross modulation

effects are specified for a given interfering signal level, P*(f )dB, the cross

modulation functional may be evaluated as follows:

CMF(fl)dB - 2P*(fl)dBm+CMR*dB (4.129)

where CMR*dB = cross modulation ratio resulting

from reference interfering signal.

The limits for conducted susceptibility resulting from cross

modulation are specified in MIL-STD-461 (CS05). If these limits are used the

following default models shown below result.

From MIL-STD-461, the interfering ignal power will be

66 dB above some standard reference, assumed to be the receiver sensitivity,

so

P*(fl)dBm = PRdBm+66dB (4.130)

and

CMR*dB = 0 (4.131)

Then the CMF may be written

CMF*dB = 2PRdBm+132dB (4.132a)

and the default model is

CMR dB = -2P IdBm+2P RdBm+I32dB (A.132b)

It is possible to define an interference margin for cross

modulation in much the same manner as the desensitization interference margin

was defined. The interference margin will be defined as the amount by which

the CMR exceeds a reference of -20 dB, the minimum observable cross modulation

Equation 4.132b may then be written using this criterion.

Interference Margin = CMR dB + 20 dB (4.133)

The equations just presented describe modulation of a desired AM

signal by an interfering AM signal. Expressions similar to those in Table 4-9

willbe derived for other types of cross modulation.

For interfering signals other than full carrier, double sideband

AM, another approach is used to evaluate the cross modulation signal-to-

interference ratio. This approach still correlates cross modulation with

desensitization, but from a different point of view. Large signals entering a

receiver cause desensitization, that is, gain reduction to the desired signal.

If the bandwidth of the RF stages of a receiver is large enough, the gain re-

duction will follow the amplitude variations of the interfering signal and in

this manner impart the unwanted modulation to the desired transmission.
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Using this hypothesis, a modulation index, analogous to the AM

modulation index, can be computed from the desensitization information. The

expression for modulation index of an AM signal in terms of maximum and minimum

instantaneous signal amplitude isS S ASo/S°

m S max -Smin (4.134)
i S +S . 2-AS 0 /S 

(AS max mn o o
where 0 is defined in Section .2, and:

S
0 m. = modulation index

S = maximum instantaneous signal amplitude
max

S min = minimum instantaneous signal amplitude

Since the CW signal now has modulation on it, the signal-to-

interference ratio is the ratio of the carrier amplitude to the sideband

amplitude.

S/I = 20 log(m ) (4.135)

Suppose instead of CW carrier, the desired signal has been amplitude modulated,

then the sideband-to-sideband ratio would be

m
S/I = 20 log (-) (4.136)

where

m = desired signal modulation index

mi = equivalent interfering signal modulation index.

Equation 4.136 is the cross modulation signal-to-interference model chosen for

single sideband interference to AM receivers, when mi is computed by equation

4.134. The desired signal modulation index for AM signals is proportional to

the total power in the modulation sidebands. Actually, the fraction of total

power in the sidebands equals m /2. Equation 4.136 can be modified to describe

single sideband interference to a single sideband receiver

if one considers that for this type of desired signal, all the power is

contained in the information sidebands. Equation 4.137 expresses the cross

modulation signal-to-interference ratio for SSB interference to SSB

receivers.

S/i - 20 log (2/m ) (4.137)

4-4.9



Equation 4.137 could also model pulse interference to AM receivers except that

the interference appearing at the audio output of the receiver is proportional

to the average power because, normally, the pulse bandwidth is consid rably

larger than the receiver last IF passband. A bandwidth correction factor is

needed, also. The signal-to-interference ratio from cross modulation due to

pulse interference is

m
S/I = 20 log()-Olog(rf )-10 log (TAf) (4.138)

m I r
1

where

T = pulse width (seconds)

fr = pulse repetition frequency (pps)

Af= receiver overall 3-dB bandwidth.

This can be seen if we examine the relationship of S/Ipeak'

given by equation 4.136, to S/Iavg the desired ratio for pulse modulation of

AM receivers. S/Iavg will equal S/Ipeak minus the correction factors described

above, since the factors affect the interference power, which is in the de-

nominator of equation 4.136. Therefore
ms Af 3S/I - 20 log -20 log 1 -10 log (4.139a)

avg m I T fr
But since

20 log = f 20 log Tf 
(4.139b)

r
and

10 log Af3 = 10 log Af 3 T -10 log Tf (4.140)fr
r

S/I is then seen to be the expression given by equation 4.138. This situa-
avg

tion, were the interfering pulse width is much greater than the receiver band-

width, is seen in Figure 4"-8.

By applying the same rationale that was employed to arrive at

equation 4.137, from the expression of single sideband interference to an AM

receiver, an expression of pulse interference to single sideband receivers is

given by equation 4.141.

S/I = 20 log(2/m i) -10 log(Tf r ) -10 1og(TAf 3 ) (4.141)

By applying the same logic used to obtain the form of the inter-

ference margin in Equation 4.133, all of the signal to interference ratios

in this section may be expressed as interference margins using the relation-

ship:

Interference Margin = T dB + 20 dB (4.142)
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This section has presented equations describing third order cross

modulation of many signal types. Three notable signal combinations were exluded

from consideration, however, based on the reasons given below:

1) FM cross modulation is not considered since the frequency

information in an FM signal is not adversely affected by

cross modulation amplitude yariations. In addition, since

most FM receivers have some sort of amplitude limiting,

the cross modulation fluctuations would be undetected.

2) Pulse modulation of pulse signals is deemed insignificant

since cross modulation between pulses depends on their

simultaneous occurrence. Considering typical pulse duty

cycles, this simultaneous occurrence is highly unlikely,

and was not considered in this analysis.

3) Cross modulation of pulse signals is deemed insignificant

because it does not usually result in degradation of these

types of receptors.

4.6 Spurious Responses

A spurious response in a superheterodyne receiver arises when

an interfering signal, (or one of its harmonics) enters a nonlinear mixer

and combines with the local oscillator frequency of the mixer (or one of its

harmonics) to produce a "spurious" output which falls into the receiver IF

passband. This can be a serious problem due to the large amplitude of the

local oscillator signal which can mix with even small interfering amplitudes

to produce system degradation. A diagram of a typical superhetrodyne receiver,

with three stages of nonlinear mixing may be seen in Figure 4-9. For the

first mixer in Figure 4-9, assume the interfering signal (or one of it's

harmonics, denoted by q) passes through RF preselection and amplification

with sufficient amplitude to enter mixer number one. When mixed with the

first LO frequency (or one of it's harmonics, denoted by p), the output

frequency will occur at

fOUT - Pf LOqfSPUR (4.143)

In order to produce degradation, fOUT must be within the first IF passband of

the receiver. This will encompass a range of frequencies denoted by

or " F1 ±AfIFl (4.144)
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Therefore, degradation will occur for a range of interfering frequencies such

that
pl L0 lf +l(flFl + AfIF I )

f SPUR =  (4.145)

Now, given that equation 4.145 holds at each mixer, the requirement
that f causes interference in a triple conversion receiver leads to the

SPUR
requirement that

1 fLOl P2fLO2 P3fLO3±(fIF3-f 1F3(+ - +(44)
fSPUR ql + qlq 2  - qlq 2 q3

where the final output must be within the final IF output passband.

From equations 4.145 and 4.146, it is obvious that the interfering

signal need not be near the center of the receiver RF passband to cause

degradation and may, in fact, be greatly attenuated prior to mixing with the

large amplitude local oscillator frequency. This leads to two observations

regarding spurious responses.

1) Since the spurious response frequency need not be in the

RF passband, it will be the only nonadjacent channel

effect considered in NONLIN. This will introduce an

additional cull at each interfering frequency.

2) Due to the large signal nature of local oscillator signal

(typically -1 volt compared with an RF input

to the mixer with amplitude on the order of lmV),

the modified Volterra analysis presented previously is not

applicable to the study of spurious responses.

As a result of these observations, the algorithms used to describe spurious

response interference will be considerably different from the algorithms used

in the Volterra analysis. These differences will now be examined in more

detail.

Assumption (1) states that the spurious responses need not be an

adjacent channel effect. If the interfering signal is nonadjacent channel,

however, it is assumed that the RF attenuation is such that only first mixer

generated responses will cause degradation. The second and third stages will

be assumed to provide only direct IF feed through (i.e., normal mixing).
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These two observations, coupled with the large signal local oscillator (allow-

ing large values for p,) will lead to nonadjacent channel spurious responses

being quantified by

1st mixer: p1 = user defined range

q= user defined or q 1 l default

1i

2nd mixer: p 2 = q 2 1

3rd mixer: p3  q3

If the interfering signal is adjacent channel it will experience

considerably less RF attenuation than a nonadjacent channel signal. Therefore,

Pand q, will be allowed to take on a range of values determined by the user.

As may be seen in Figure 4.10, however, higher order mixes require very high

input signal levels to cause degardation. It is thus deemed advisable to

limit the second and third mixers to values of p and q which are equal. As

seen from Figure 4.10, this will result in an output near the IF frequency,

which will pass relatively unattenuated to the next receiver stage. Using the

above assumptions yields the adjacent channel response quantization.

Ist mixer: p1 = user defined range

ql = user defined range

2nd mixer: P2 = q2 = 1 2, 3

3rd mixer: P3 = q3 = 1, 2, 3.

Observation (2) will now be used to describe the response at the

frequencies given above.

Because of the large signal nature of the local oscillator, an

alternative to the Volterra analysis is needed to describe system degradation

due to spurious responses. NONLIN will describe spurious responses in terms

of piecewise linear resphnse curves. For q - 1 these response curves will be

of the form

PS dBm - Ilog p +J (4.147)

In general, I and J must be determined for each particular receiver under

consideration. In fact, it is often necessary to consider that the power

needed to produce a response will have a different linear relationship in

different receiver frequency intervals. This will necessitate determination

of other values for I and J for additional frequency intervals in the receiver

passband. 4,5
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Equation 4.147 will hold only in the non-adjacent channel region. In the

adjacent channel region, the response will be of the form:

PsRdBm - I log f + J (4.148)

The spurious response powers in equations 3.147 and 3.148 may be

related to the interference margin by noting that the interference margin is

just the actual interfering signal level minus PSR*

The piecewise linear equations which quantize the response as a

function of p for q = I are of the form given in equation 3.148. Analagous

results for other values of q will also have a piecewise linear relationship.

In general, however, the constants I and J will be quite different from those

for the q=1 responses, and must be determined for each receiver from experi-

mental data.

As a rule of thumb, experimental data has shown that the q = 2

responses will be approximately 15 dB below the q = 1 responses, and the q = 3,

4 responses will be on the order of 20 dB below the q = 1 responses. These

values will be utilized as default values in NONLIN in the absence of more

complete user specifications.

The piecewise linear model described above has been validated

completely and is discussed in detail in references 2 and 13. This model may

be used to formulate default equations for spurious responses based on the

CS04 limits of MIL-STD-461 (see Figure 4-4). The defaults will be formulated

by assuming that the response, PSR' will be a signal of the form seen in

Figure 4-4. This assumption will then be utilized to solve for I and J in the

various regions of interest. If this is done, the defaults in Table 4-10 will

result. The equations in Table 4-10 describe the response if q-1. As stated

previously, PSR (in the region outside the 80 dB bandwidth) will be 15 dB

lower if q=2 and 20 dB lower if q = 3 or 4. Inside the 80 dB bandwidth region,

the default equations for higher values of q will be the same as the q-l

equation in Table 4-10.
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Table 4-10 Default Models for Spurious Responses

For Interfering signals within the receiver 80 dB bandwidth

f-H <f +W

o 2- INT 0 2

P dBm = P dBm +160 [ff
SR R W o

For interfering signals outside the receiver 80 dB bandwidth but within the

overall tuning range of the receiver

W w
f < f <f - or f + <f < f
L- INT- o 2 o - INT - H

P sRdBm = PRdBm + 80 dB

For interering signals outside the tuning range of the receiver

fINT < fL or fINT > 
fH

PsRdBm = 0 dBm

where

f = receiver tuned frequency0

W = receiver 80 dB bandwidth

PR = receiver sensitivity

4
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5.0 NEW MODEL FOR PORT SPECTRA

The new port spectra model consists of a r,,.Jly designed algorithm

to replace the current "quantization' method in IEMCAP for modeling a port's

spectra. The following features are incorporated in the new model:

* Generate Equipment Frequency Table

* User Specified Frequency Range for Analysis

(C to 50 GHz and greater)

* User defined port spectra of up to 90 frequency -

amplitude points for required and/or nonrequired

frequency ranges

* Generate frequencies and amplitudes for prestored

emitter and receptor models required by User's inputs

currently required by IEMCAP

* Generate frequencies and amplitudes for harmonic

signals as directed by User inputs currently

required by IEMCAP

9 Generate frequencies and amplitudes for any port's

nonrequired spectra using prestored MIL-STDS (461A,

6181D and 704) and the corresponding system

displacement factors.

Each of these features are discussed with regard to the present IEMCAF capability

and then the developed replacement technique and models are described.

The equipment frequency table is generated by IEMCAP based on input

data cards associated with keywords "FREQ" and "FQTBL." The FREQ card provides

the lower (f l) and upper (fu) frequency limits, number of frequencies per

octave and the maximum number of frequencies (nm ) for the equipment. The
max

FQTBL card(s) contains user specified frequencies (in ascending order) for the

equipment. Using these data, the IEMCAP determines the total number of fre-

quencies (up to nax) that are to be generated by the program for the equipment.

The program geometrically spaces the program generated frequencies over the

total frequency range (f1 to f The equipment frequency table is then
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determined beginning with fl" The next frequency is the lessor of the first

program generated frequency or the first user specified frequency on the FQTBL

card(s). This process is repeated up to and including the upper frequency

[ limit (fu) of the equipment. The subroutine FTGEN generates the equipment
frequency table.

FTGEN with subroutine FTSRCH establishes the appropriate table

frequencies to be used on each port of the equipment. The port frequency

range is presently based upon the MIL-STDS. For example, an RF emitter port

under MIL-STD-461 has a frequency range of 14 kHz to 18 GHz. FTGEN selects

the appropriate table frequencies to encompass this range.

The specified frequency range for IEMCAP is 30 Hz to 18 GHz.

These frequency limits are based on the frequency limits associated with the

MIL-STDS. Each of the different port types (i.e., RF, Signal/control, etc.)

has an assigned receptor and emitter frequency range. A user may specify a

frequency range less than the above, e.g., 30 Hz to 10 GHz, 14 kHz - I GHz,

etc. and the port frequency ranges will be adjusted accordingly. A user may

not specify a frequency range greater than the above, i.e., frequencies <30 Hz

or greater than 18 GHz are not permitted.

IEMCAP has an option for user defined port spectra. This option

allows a user to specify the required frequency range portion of a port's

spectra. Up to ten amplitude-frequency pairs may be specified at the input

level. These spectra will be used in place of a prestored model to represent

the required frequency region of a port. When specifying a port spectra, an

emitter's spectra are input in broadband units and a receptor's spectra is

defined in terms of narrowband units.

To generate frequencies and amplitudes for prestored emitter and

receptor models, the IEMCAP requires certain user inputs. The user inputs may

consist of both time and frequency domain parameters. With the user specified

data, the program determines the appropriate spectra via the spectra model

routine. The spectra model routine consists of several subroutines which pro-

vide both emitter and receptor spectra in both the required and nonrequired

frequency ranges. The required frequency range models are frequency domain,

asymtotic expressions of the modulation envelope of a signal process. The non-

required frequency range models consist of the various MIL-STDS that are pre-

programmed in the IEMCAP.
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A user is free to choose the frequency representation of a port in

several ways as discussed above. However, the IEMCAP uses a "Quantizing

technique" which may provide a distorted representation of a given prestored

model or a user input spectrum (SPECT) on a port if the frequencies are not

chosen in a judicious manner. Quantizing consists of choosing the maximum

(emitters) or minimum (receptors) values within the frequency intervals

established by the program for the equipment. Thus, the peaks and nulls

associated with the quantized spectra will be shifted in frequency from the

original spectra. The user must choose his frequency representation with car%

for an accurate representation. An acceptable procedure for determining the

frequency represzntation of a model is presented in RADC-TR-78-140 (Paul). (i)

This procedure is quite adequate for the present IEMCAP to implement but it

requires considerable effort on the part of the user. A user must determine

the frequencies required to represent a given model and then enter these

frequencies via the FQTBL card(s) discussed above. This procedure must be

performed for each port of an equipment. Similar techniques are used for the

nonrequired frequency range modeling.

5.1 Generation of Equipment Frequency Table

To generate the equipment frequency table each port of an equipment

will be examined for fundamental, tone and harmonic frequencies where applicable.

Using these frequencies and the prestored model data the remainder of the port

frequencies will be generated. Included in the port frequencies will be transi-

tion frequencies between required frequency range models and nonrequired fre-

quency range models and the upper and lower frequency limits of the required

frequency range. The new procedure for generating the equipment frequency

table will be based upon the following.

e Prestored Model (Required)

* Fundamental Frequency (fC)

* Tone Frequencies (f t)

9 Frequencies of the intersect points of

asymtotic expressions of model (f1 )

* Fundamental frequency plus one-half the
BWC.

bandwidth of the channel (f + ---
c 2

0 Fundamental frequency minus one-half the

bandwidth of the channel (f ---

c 2
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* MIL-STDS (Nonrequired)

* Lowest port frequency (f

* Frequencies at intersection points

of model (change in slope) (fI)
BWC

* f --- 0 .01 (fc 2

BWC

0 f c 2+-' + 0.001 (f+)

•Highest port frequency (f h)

•Harmonic Frequencies*

2Harmonic Frequency (nfc

BWC.s ~ c  2 ---
nf-BWC
ncf2

n(fc +-'V-C + 0.001

nf c - 2 - 0.001
c 2

e User Specified Frequencies

The above procedure has been applied to each of the prestored models in IEMCAP,
and the number of frequencies needed to define each model is shown in Table 5-1.

The following example of RF emitter radar model with a rectangular pulse will

desmonstrate how the numbers in Table 5..1 were derived.

For CW BWC -1 and only three frequencies
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Table 5-1 Number of Model Frequencies

Prestored Model No.Harmonic Total Pre- I
___ _.________ Frequencies stored and MIL-STDS

Port Number For 9 Har- Harmonic
Type Name Frequencies monics 461-A 6181D

CW 1 27 28 4 4
PDM 5 45 50
NRZPCM 5 50
BPPCM 5 50
PPM 4 49
TELEG ft=O 7 52

TELEG ftio 8 53
FSK 4 49
PAMFM 3 48
RADAR-TPZD 6 51

RECTPL 5 50
RF COSOD 4 49

EMITTER GAUSS 3 48
CHIRP 9 54

AM-VOICE 6 51

CVOICE 7 52
NONVCE 5 50

DSBSC-V 5 50
DSBSC-CV 6 51
DSBSC-NV 4 49
LSSB-V 5 5n
LSSB CV 6 51
LSSB-NV 4 49
USSB-V 5 50
USSB-CV 6 51 [

USSB-NV 4 49

FM 5 50LOLKG 2 47 "'

PDM 3 N/A 3 5 4
NRZPCM 3 3
RPPCM 3 3
PPM 4 4
TELEG ftffO 3 3
TELEG ft#O 3 3

SIGNAL PAM 5 5
CONTROL ESPIKE 3 3
EMITTER RECTPL 3 3

TPZD 3 3
TRIANG 3 3
SAWTH 4 4
DMPSIN 5 5
VOICE 5 5
CVOICE 6 =6 _ _

EED NONE NONE NONE NONE NONE

CASE NONE NONE NONE 5 7
POWER 1 2 3 5 3N/A RF-2 RF-2

TRIANG 3 3 S/C-2 S/C-2

RECEPTOR CASE-6 CASE-b

TPZD 4 4 POWER 4 POWER-4
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The radar rectangular pulse representation in IEMCAP is the

following:

P B~f 'Prf 8  ;IAfV(AfM

PBM p7
2 f 8  41M2 4M < AfI(4AI

where

r-pulse duration

fB-bit rate

2
bandwidth -

P - peak power

Figure 5-1 shows the frequency domain representation of the above

Figore 5-1 Radar Rectangular Pulse
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From Figure 5-1 and recognizing that the required range is BWC (bandwidth of

channel) wide, the prestored model (required) frequencies are

fc,(f + f ), (f+BWC
c c m c-_

Thus, a total of 5 frequencies are used for the Radar Rect pulse in the re-

quired frequency range. To determine the nonrequired frequencies, the MIL-STDS

are used. The nonrequired frequencies are:

fo,c + 0.001),f-- c - 2 - . 0 ) fhs

Only four frequencies are used for the MIL-STD for this example because the

specification for the radar pulse (RF) is a constant over the total frequency

range (excluding the harmonics). The harmonic frequencies are specified by

the following:

BWC BWC
nfc,(n(f+ ---), n(f -- ) + 0.001]

Five frequencies are used per harmonic and a total of 45 frequencies will be

required if 9 harmonics are to be specified (the maximum number allowed by

IEMCAP).

5.1.1 Frequency Table Generation Routine (FTGEN)

The above procedure for generating the equipment frequency table

can be integrated into the IEMCAP by replacing the present FTGEN routine. The

new FTGEN routine will utilize the equipment port data to generate the equip-

ment frequency table. The frequencies will be determined from prestored

models, harmonics, user specification, mulitary standards and/or combinations

of any or all of these models. For prestored models (including Military

Specifications) this routine generates frequencies at the interaction points

(changes in shape for straight lines) in the model. The lower and upper

frequency limits for the required frequency range model will be determined by

the bandwidth of the channel as specified on the input data. The lower and

upper frequency limits for Military Specifications are specified in the

particular standard. Transition frequencies between the various models will

be determined by the routine. Once the set of frequencies (<90) has been

determined they are ordered in ascending order as required by the IEMCAP.
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5.1.2 Frequency Range for Analysis

The specified frequency range of analysis is determined by

prestored table values for each port type. The frequency limits 'are

established according to the model capability limits programmed into the

IEMCAP. The prestored table values are contained in arrays FMIN and FHAX of

the FTGEN subroutine. The values assigned to FMIN are the lower frequency

limit for each port type. The FMAX values are the upper frequency limit

assigned to each port type. The absolute values assigned to these arrays

are established via the "DATA FMIN/, FMAXi STATEMENT" in subroutine FTGEN.

A lower frequency limit for a port should be greater than 0 Hz.

The preferable lower frequency limit is 1 HZ. However, values close to zero

may be used (e.g., 0.5, 0.75, etc.). The upper frequency limit of a port

should be set to the maximum allowable value which is consistent with the

IEMCAP modeling.

5.2 Generation of Port Spectra Amplitudes

The port spectra amplitudes are computed from prestored emitter

and receptor models, harmonics, user specified data and prestored MILITARY

STANDARDS models. Various combinations of these models may be used in deter-

mining the spectrum of a given port. The new SPECT option provides the

following capability for representing a port's spectra:

e Specification of total spectra (both narrowband and

broadband) with up to 90 frequency-amplitude pairs

* Specification of required spectra with up to 90

frequency-amplitude pairs

e Specification of nonrequired spectra with up to

90 frequency-amplitude pairs

* Specification of a portion of the total spectra

contiguous in frequency (Required spectra may not

be split between SPEC and prestored models, i.e.,

if it is desired that any part of required spectra be

input, then all required spectra must be specified for

this option)
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Thus, with the New SPECT option the user has considerably more flexibility

for representing the port spectra. The options available for an RF emitter

port are shown in Figure 5-2. Figure 5-2 shows the RF emitter port representation

for both a required model (MODSIG # SPECT) and a user specified model (MODSIG=

SPECT) option. For both of these options the nonrequired models and harmonics

are utilized as shown in Figure 5-2

The signal and control emitter port types are similar to the RF

emitter port representation with the exception that there are no harmonics to

be considered. Therefore, Figure 5-2 is representative of the signal and control

emitter ports exclusive of the harmonic designations.

The emitter power port representation is similar to the RF emitter

port except the required frequency range model is only a single frequency,

i.e., the frequency of the power signal.

Both the emitter and receptor case port spectra may be represented

as shown in Figure 5-1 Auser may specify all or a portion of the case port

spectra and the remainder will be represented by a MIL-STD. A case port has

only a nonrequired frequency range.

The options for an RF receptor port are shown in Figure 5-4. As

shown in this figure, there are several options available for combining pre-

stored models (both required and nonrequired) and user specified data. Other

receptor port types (signal, control, case and power) may be represented in

a similar manner.

The EED port type is unchanged from the present capability provided

by IEMCAP.

5.2.1 Calculation of Port Spectra Levels

In order to determine the level for a given port frequency of an

equipment, the various user options discussed above have been incorporated in the

spectra level calculation. Each port of an equipment is examined for

prestored model selection and/or user specified data.
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Figure 5-4 RF RCPT Port Spectra
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6.0 INTEGRATION OF THE FOUR TASKS WITH THE IEMCAP

The objective of the subject contract was to increase the prediction

capability of the IEYCAP. The increased capability was to be derived from the

following four tasks:

(1) Antenna Out-of-Band Radiation Characteristics Models

(2) Nonaverage Power Sensitive Receptor Models

(3) Nonlinear Effects Modeling

(4) Port Spectra Representation Modeling

A detailed discussion of the modeling effect for each of these tasks is

presented in prior sections of this report. The following subsections present

the methods and locations of the interface with the IEMCAP.

6.1 Modifications to IEMCAP Logic Flow

The IEMCAP is divided into four sections as shown in Figure 6-1.

As shown in the figure the four sections are: 1) Initial Processing Routine,

2) Wire MAP Routine, Specification Generation and Comparative EMI Analysis

Routine and 4) NONLIN Routine. These sections are executed independently

(i.e., separate programs) with various intermediate data storage files (disk

or tape) as previously defined and used by IEMCAP. The program sections can

be run in succession or executed in tandem. For systems with no wire, the

second section can be omitted. This four section approach provides considerable

flexibility in executing the new IEMCAP. As before, the first and second

sections (for systems with wire bundles) can be run independently until data

errors have been eliminated before running the analysis sections (TART and NONLIN).

A brief description of the functions performed by each program

section is given below. The overall philosophy of the IENCAP has been

maintained and emphasis placed on segmenting program sections to keep down

computer main memory requirements.

The first section of IEMCAP remains the IDIPR with the same

purpose as before except the wire map routine has been removed. The input

decode routine reads and decodes the tree-field input data from punched cards

and checks the data for errors. All processing remains the same as that per-

formed before the modifications to the program.

With the input cards properly processed, the initial processing

routine performs data management, interfaces with the spectrum models and

generates the working files. All prior functions performed by the initial

processing routine are maintained.
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The second section of IEMCAP, called the Wire MAP Routine (WMR),

is the same as the WMR of the previous IDIPR routine. WMR generates cross

reference map arrays for use by the wire coupling models of TART. The WMR

was set up as a separte program for two reasons. First, removal of WMR from

the IDIPR reduces the computer main memory requirements (approximately 20K

words) for IDIPR. Thus, allowing some flexibility in the memory requirement

of the new IDIPR with modifications for the above tasks. Seconoly, removal

of WMR from the IDIPR provides more flexibility for analyzing non-wire systems.

The second section is only required if the system under analysis contains wire

bundles.

The third section of IEMCAP, TART, performs the same functions as

that performed before the modifications to the program. The four tasks per-

formed by TART are:

• Specification Generation

* Baseline System EMC Survey

* Trade-off Anlaysis

* Waiver Anlaysis

These tasks remain the same as defined in the IEMCAP documentation.

TART is composed of two basic routines (Figure 6-1). The speci-

fication Generation Routine (SGR) performs the first task above and the

comparative EMI analysis routine (CEAR) performs the other tasks. Both

routines interface with the coupling models to compute transfer ratios

between emitter and receptor ports.

The fourth section of IEMCAP, called the Nonlinear Effects

Modeling Analysis Routine (NONLIN), uses the data compiled by IDIPR to perform

the desired analysis task. The tasks performed by NONLIN are 1) nonlinear

effects due to equipment nonlinearities and 2) nonlinear effects due to

structurally generated intermods.

If only structurally generated intermods are to be examined, the

SGENIM Routine is utilized. SGENIM interfaces with the coupling routine to

generate system degradation due to nonlinear metallic junctions.
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For nonlinear effects associated with electronic equipment, the

program proceeds into the NOSGIM routine. The NOSGIM routine uses the non-

linear analysis data from IDIPR (working files) to determine which nonlinear

effects models are appropriate in the analysis. NOSGIM interfaces with the

coupling model routine to compute the transfer ratios between emitter and

receptor ports.

A discussion of the new IEMCAP organization and overall logic flow

was presented in Section 6.0. In this section, the major routines are

identified and discussed to show the modifications to IDIPR and TART.

The WMR and NONLIN sections are not discussed in this section.

The WMR remains the same as presented in prior IEHCAP documentation. Therefore,

no further discussion of Wt is warranted. For NONLIN, the major routines

are identified and discussed in the program documentation report.

6.1.1 Modifications to IDIPR

The IDIPR consists of three basic programs. Figure 6-2 shows the

overall logic flow through them and identifies the basic functions and data

files used by each. The three subprograms are the Input Decode Routine

(IPDCOD), Initial Processing Routine (IPR) and the Spectrum Model Routine

(SPCMDL). The basic operation of these routines remains unchanged and will

not be presented here. The remainder of this section discusses the modifica-

tions to these routines. The actual coding modifications are presented in the

program documentation report of the various tasks with IEMCAP.

6.1.1.1 Input Decode Routines

The Input Decode Routine (IPDCOD) performs the functions defined

in Figure 6.2. Modifications to IPDCOD consisted of changes to read new input

cards, increased arrays for storing the new data, modifying read and write

statements, and elimination of the capability for handling wire bundles.

The specific routines involved are presented in the appropriate

sections discussing the interface of the tasks with IENCAP in the program

documentation.
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6.1.1.2 Initial Processing Routine

The IPR functions are as specified in Figure 6-2. No new functions

were added to the IPR but essentially all of the functions were modified. The

formatting for reading input data files was modified to accommodate the new

input data required by the tasks on this effort. A new frequency generation

subroutine was added to IPR to generhte the equipment frequency table. The

SPECT option on input data was modified and a new procedure was developed for

generating the required and nonrequired port spectra.

6.1.1.3 Spectrum Model Routine

The SPCMDL routine functions are as shown in Figure 6-2. These

routines compute required and non-required spectra for emitters and receptors

using mathematical models. The techniques used to obtain these spectra by the

present IEMCAP is referred to as the "Quantization of Port Spectra". This

technique has been replaced with the new procedure described in Section 5.0.

The routines associated with SPCMDL remain essentailly the same in number and

name or designation, but several routines were redesigned to elminate the

quantization technique and accommodate the new port spectra representation.

The requied and nonrequired port modeling philosophy was retained.

6.1.2 Modifications to TART

The TART consists of two basic programs. Figure 6-3 shows the

overall logic flow through them and identifies the basic functions and data

files used by each. The basic subprograms are the Specification Generation

Routine (SGR) and the Comparative EMI Analysis Routine (CEAR). The coupling

Path Routine (CPR) and Analysis and Spectrrum Adjust Routines are support

functions for the basic subprograms. The overall operation of these routines

are unchanged and thus the basic philosophy will not be presented here. Rather,

the remainder of this section is devoted to discussing the actual modifications

that were made to incorporate the various tasks associated with this effort.

The actual coding modifications are presented in the sections pertaining to

the interface of the four tasks with IEMCAP in the program documentation.
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6.1.2.1 Specification Generation Routine

No modifications were made to the Specification Generation Routine SGR.

6.1.2.2 Compartative EMI Analysis Routine

CEAR performs the Baseline survey, Trade-off and Waiver analysis

tasks of the IEMCAP. This routine was modified to handle the nonaverage power

sensitive receptor models discussed in Section 3.0. CEAR was originally

designed to perform the above tasks using average power as the criteria for

determining EMI conditions. Hence, with the new requirements of the non-

average power sensitive receptor task, CEAR must be able to handle interactions

between various receptors with different susceptibility criteria.

6.1.2.3 Analysis and Spectrum Adjust Routines

The analysis and Spectrum Adjust routines are utilized by CEAR

to perform the various functions required to obtain the EMI margins. The bauic

operation of these routines had to be modified to include the new suscepti-

bility margins defined in Section 3.0. The models for total energy, peak

current/voltage and bandwidth were added to these routines.

6.1.2.4 Coupling Path Routine

No modifications were made to the Coupling Path Routine CPR.

6.2 Interface of Antenna Out-of-Band Characteristics Models

The antenna out-of-band characteristics task was designed to

provide an improved antenna model within the IEMCAP. Because of the complexity

and large variations in parameters associated with an antenna type, it is not

recommended that the antenna out-of-band characteristics modeling be implemented

in IEMCAP at this time. Rather, it is recommended that additional effort be

expended in this area to futher refine the developed models.

6.2.1 Interface with IDIPR

None

6.2.2 Interface with TART

None
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6.3 Interface of Nonaverage Power Sensitive Receptor Models

To implement the nonaverage power sensitive receptor modeling

described in Section 3.0, several existing subroutines of the IENCAP were

modified. Both the IDIPR and TART Sections are affected by these modifications.

6.3.1 Interface with IDIPR

The interface with IDIPR for the nonaverage power seasitive

receptor models involves the input data requirements discussed in the User's

n1nual. The portion of the IDIPR affected by the input data includes the IDR,

IR and the SPCMDL. Subroutines modified in the IDR are

* CARDIN

e PIFRIT

e ALPSEL

e DUPCHK

e SSINIT

e STORE

* PARCHK

The modified IPR subroutines include:

* ISFRIT

* FTGEN

* SPCMDL

* SSINIT

o MERGE

Within SPCMDL the modified routines are:

* LOGLIN

* SCARFE

Flow diagrams of each of the above subroutines with the appropriate

modifications are presented in the program documentation.

Several additional subroutines within IDIPR required some

minor modifications. These modifications include items such as array dimen-

sions, read and write statement formatting, elimination of frequency intervals,

DO LOOP subscripts, etc. The routines effected by these minor changes are:

9 READEQ

* REPORT
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* WFRIT

o SCARFE

e SCARFR

a M461

e M6181

o M704

6.3.2 Interface with TART

Since the TART section of IEMCAP performs the analyses, the

subroutine interfaces will include additional data requirement and the new

models for the nonaverage power sensitive receptors. The portion of the TART

affected by the input data in the CEAR. Subroutines modified in CEAR are:

o CEAR

a EMCASA

e TORS

e EMTRD

* RCPTRD

* EMINTS

Flow diagrams of each of the above subroutines with the appropriate

modificatons are presented in the program documentation.

6.4 Interface of the Nonlinear Effects Models

The nonlinear effects modeling has been designed to utilize the

IDIPR section of the IEMCAP to input the necessary data required by the NONLIN

section. That is, the IDIPR performs the necessary processing of the data

requirements for NONLIN in the same manner as the data requirements for the

linear (TART) section of the IEMCAP. Thus, it is a requirement that IDIPR be

run before a NONLIN analysis is to be performed on a system.

6.4.1 Interface with IDIPR

To obtain the input data described in Section 4 of

this report, the data must be read off cards, decoded, and stored in arrays

and working files. The same basic technique is used for inputting data for

NONLIN as presently exists in IDIPR. Thus, several of the routines described

in Section 6.2 are applicable for the NONLIN input data requirements. The

IDIPR routines involved are repeated here for convenience.
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Subroutines modified in the IDR are:

e CARDIN

e PIFRIT

. ALPSEL

* DUPCHK

* SSINIT

* STORE

e PARCHK

The modified IPR subroutines include:

e ISFRIT

* SSINIT

* MERGE

Flow diagrams of each of the above subroutines with the appropriate

modifications are presented in the program documentation report.

6.4.2 Interface with TART

There is no interface with TART for NONLIN.

6.5 Interface of Port Spectra Representation

The interface of the port spectra representation modeling is

involved with 1) removal of the port spectra quantization technique,

2) generation of the equipment frequency table, 3) establishing new frequency

limits for the defined ports and 4) incorporating a replacement algorithm for

the quantization technique. To incorporate these changes into IEMCAP required

several modifications to existing subroutines in the IEMCAP.

6.5.1 Interface with IDIPR

The interface with IDIPR for the port spectra representation

model involves the input data requirements discussed in the Userts Manual. The

portion of the IDIPR affected by the input data includes the IDR, IPR and the

SPCMDL. Subroutines modified in the IDR are:

• CARDIN

* PIFRIT

a ALPSEL

* DUPCHK

* SSINIT
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@ STORE

e PARCHK

The modified IPR subroutines include:

9 ISFRIT

* FTGEN

a SPCMDL

9 SSINiT

Within SPCMDL the modified routines are:

e LOGLIN

0 SCARFE

Flow diagrams of each of the above subroutines with the appropriate

modifications are presented in the program documentation report.

Several additional subroutines within IDIPR will require some

minor modifications. These modifications include items such as array

dimensions, read and write statement formatting, elmination of frequency

intervals, DO LOOP, subscripts, etc. The routines affected by these minor

changes are:

* READEQ

@ REPORT

* WFRIT

* SCARFE

* SCARFR

* M461

* M6181

* M704

6.5.2 Interface with TART

As a result of the change in the SPECT option associated with the

port Spectra representation, a change in the integrated margin calculation was

needed. Since a user may now specify the narrowband spectra for an emitter,

it follows that the integrated margin calculation should include only those

spectra specified by the user, that is, the IEMCAP method of integrating over

bandwidth would provide an extremely "worst case" result. Thus, several

routines within TART were modified to provide an integrated margin for narrow-

band specified spectra. For narroband spectra, the integrated margin is
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computed by summing the average levels (delta functions) over the specified

frequency range. Subroutines modified in TART to provide this capability are:

e EMINTS

* TORS.

Flow diagrams of each of the above subroutines with the appropriate

modification are presented in the program documentation report.
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